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ABSTRACT

We expand our study on the dispersion of polarization angles in molecular clouds. We show how the effect of
signal integration through the thickness of the cloud as well as across the area subtended by the telescope beam
inherent to dust continuum measurements can be incorporated in our analysis to correctly account for its effect on
the measured angular dispersion and inferred turbulent to large-scale magnetic field strength ratio. We further show
how to evaluate the turbulent magnetic field correlation scale from polarization data of sufficient spatial resolution
and high enough spatial sampling rate. We apply our results to the molecular cloud OMC-1, where we find a
turbulent correlation length of δ ≈ 16 mpc, a turbulent to large-scale magnetic field strength ratio of approximately
0.5, and a plane-of-the-sky large-scale magnetic field strength of approximately 760 μG.
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1. INTRODUCTION

The observational determination of the turbulent energy con-
tent within the magnetic field is important for understanding the
role of magnetic fields in the star formation process. It provides,
for example, some measure of the amount of turbulent energy
contained in the gas, while the further determination of the
turbulent to large-scale magnetic field strength ratio can in prin-
ciple be used to evaluate the large-scale magnetic strength with
the so-called Chandrasekhar–Fermi equation (Chandrasekhar &
Fermi 1953).

The determination of the turbulent to large-scale magnetic
field strength ratio was the subject of a recent publication
(Hildebrand et al. 2009; hereafter Paper I) where it was shown
how this parameter can be precisely extracted from dust con-
tinuum polarization data through a careful analysis of polar-
ization angle differences as a function of the distance between
pair of points where measurements were made (i.e., the angu-
lar dispersion function). It was described how the evaluation of
the turbulent polarization angular dispersion can be achieved
without assuming any model for the large-scale magnetic field
component about which this dispersion is calculated. This is an
important development since no model will perfectly fit the true
morphology of the large-scale magnetic field. Fits to a model
will therefore lead to inaccurate estimates of the angular disper-
sion. This error would then be propagated in the determination,
for example, of the large-scale magnetic field strength when the
Chandrasekhar–Fermi equation is used.

In the second paper on the subject, we generalize our analysis
of Paper I by including the process of signal integration through
the thickness of the cloud as well as across the area subtended by
the telescope beam inherent to dust continuum measurements. It
has long been recognized that the amount of angular dispersion
measured in a polarization map is reduced by any integration
process (Myers & Goodman 1991), as has since been studied
and demonstrated through numerical simulations (Ostriker et al.
2001; Padoan et al. 2001; Heitsch et al. 2001; Kudoh & Basu
2003; Falceta-Gonçalves et al. 2008). The effect of integration
through the thickness of a cloud has been considered by Myers
& Goodman (1991) in their studies of the optical polarization of

dark clouds, while the further inclusion of integration across the
area subtended by the telescope beam and ensuing consequences
on measurements were investigated through simulations by
Heitsch et al. (2001), Wiebe & Watson (2004), and Falceta-
Gonçalves et al. (2008).

We will start with a generalization of the problem considered
in Paper I by deriving the cloud- and beam-integrated dispersion
function in Section 2, which will then be solved for the special
case of Gaussian turbulent autocorrelation and beam profile
functions. In Section 3, we apply our analysis to dust continuum
polarization data obtained with SHARP (Novak et al. 2004;
Li et al. 2006, 2008) for the molecular cloud OMC-1. We
show how the turbulent correlation length scale for this cloud
can be evaluated with the corresponding polarization data. We
then use these results to determine the number of independent
turbulent cells contained in the column of dust probed with
our measurements and calculate the turbulent to large-scale
magnetic field strength ratio corrected for the signal integration
process. We provide a detailed discussion of our results in
Section 4 and end with a summary in Section 5. Detailed
derivations resulting in the relations and functions used in these
sections, description of the data analysis, as well as a list of
variables and functions will be found in the appendices at the
end of the paper.

2. ANALYSIS

2.1. The Cloud- and Beam-integrated Angular Dispersion
Function

In Paper I, the following equation was introduced (see their
Equations (A4) and (20)) for the analytical derivation of the
dispersion in polarization angles within a turbulent molecular
cloud

〈cos[ΔΦ(�)]〉 = 〈B(x) · B(x + �)〉
[〈B2(x)〉〈B2(x + �)〉]1/2

, (1)

where ΔΦ (�) ≡ Φ (x) − Φ (x + �) is the difference in the
polarization angle Φ measured at two positions separated by
a distance � and 〈· · ·〉 denotes an average. As was then shown,
Equation (1) (and others that derive from it) applies equally well
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to a three-dimensional magnetic field or its two-dimensional
projection onto a plane; for the purpose of this paper we consider
B (x) to be the plane-of-the-sky projected magnetic field, as
usually probed with dust continuum polarization measurements.
The distance � is also confined to the plane-of-the-sky, unless
otherwise noted. We assume that the magnetic field B (x)
is composed of a large-scale, structured field, B0(x), and a
turbulent (or random) component, Bt (x), such that

B(x) = B0(x) + Bt(x). (2)

We must note, however, that the magnetic field direction inferred
from polarization data is actually the result of some averaging
process as one integrates through the thickness of the cloud
along the line of sight as well as across the area subtended by
the telescope beam. We therefore first define the normalized
magnetic field vector

b(r, z) ≡ B(r, z)

〈B2(r, z)〉1/2
(3)

and infer a mean direction for the cloud-integrated magnetic
field through the following weighted integral of b(r, z):

b(r) ≡
∫ ∫

H (r − a)

[
1

Δ

∫ Δ

0
F (a, z)b(a, z)dz

]
d2a. (4)

The two-dimensional (convolution) integral in Equation (4) is
over all space such that for the three-dimensional position vector
x, r is the two-dimensional polar radius vector on the plane-of-
the-sky and z is the depth within the cloud. That is,

x = rer + zez (5)

with er and ez being the unit basis vectors along r and the z-
axis (which is oriented along the line of sight), respectively. The
beam profile density is denoted by H (r), while the weighting
function F (r, z) � 0 is the polarized emission associated with
the magnetic field b(r, z).5 Please note that even though b(r, z)
is normalized b(r) is not, and while the normalization by Δ
in Equation (4) is not essential it is included for convenience.
Moreover, the quantity Δ is for the maximum depth of the cloud
along any line of sight; the detailed behavior of the F (r, z)
function thus ensures that Equation (4) is exact even when the
depth of the cloud is expected to vary with position on the
plane-of-the-sky.

The normalization of the magnetic field vector through the
cloud is warranted because the amount of polarized emission in
a given region is not a function of the strength of the magnetic
field itself. Because of this we must now consider a slightly
different relation for determining the dispersion function. That
is, we replace Equation (1) with

〈cos[ΔΦ(�)]〉 ≡ 〈b(r) · b(r + �)〉
[〈b2

(r)〉〈b2
(r + �)〉]1/2

. (6)

In what follows, we introduce a level of idealization necessary
for obtaining a quantitative measure of the turbulent component

5 The measured linear polarization orientation is normal to that of the
associated plane-of-the-sky magnetic field when detecting dust continuum
emission (at submillimeter wavelengths, for example), not parallel to it as
could be inferred from Equation (4). This is irrelevant to our analysis, however,
as we are using the polarized emission as a weighting function to define a
mean orientation for the integrated magnetic field.

of the magnetic field in molecular clouds. We assume stationar-
ity, homogeneity, and isotropy in the magnetic field strength, as
well as statistical independence between its large-scale and tur-
bulent components. We therefore have the following averages
at points x and y:

〈B0(x)〉 = B0(x),

〈Bt(x)〉 = 0,

〈B0(x) · Bt(y)〉 = 〈B0(x)〉 · 〈Bt(y)〉 = 0,

(7)

and 〈
B2

0(x)
〉 = 〈

B2
0(y)

〉 = 〈
B2

0

〉
,〈

B2
t (x)

〉 = 〈
B2

t (y)
〉 = 〈

B2
t

〉
.

(8)

It is straightforward to show that the homogeneity in the
field strength renders the field normalization of Equation (3)
inconsequential in Equation (6) and we can therefore equally
write

〈cos[ΔΦ(�)]〉 = 〈B(r) · B(r + �)〉[〈B2
(r)〉〈B2

(r + �)〉]1/2
, (9)

with the cloud- and beam-integrated magnetic field

B(r) =
∫ ∫

H (r − a)

[
1

Δ

∫ Δ

0
F (a, z)B(a, z)dz

]
d2a (10)

and where the assumed isotropy in the distance (� = |�|) was
incorporated. Equation (9) is the relation we will use to estimate
the angular dispersion function.

2.2. The Integrated Magnetic Field Autocorrelation Function

In view of the assumed stationarity and isotropy the in-
tegrated magnetic field autocorrelation function 〈B · B(�)〉 ≡
〈B(r) · B(r + �)〉 can be expressed as (see Equations (A1)–(A5))

〈B · B(�)〉 =
∫ ∫ ∫ ∫

H (a)H (a′ + �)

×
[

2

Δ

∫ Δ

0

(
1 − u

Δ

)
RF (v, u)RB(v, u)du

]
d2a′d2a,

(11)

where we introduced the (assumed statistically independent)
autocorrelation functions for the (non-integrated) magnetic field
and the polarized emission

RB(v, u) = 〈B(a, z) · B(a′, z′)〉 (12)

RF (v, u) = 〈F (a, z)F (a′, z′)〉 (13)

with u = |z′ −z| and v = |a′ −a|. These autocorrelations can be
further broken down through the decomposition of the magnetic
field and the polarized emission into their respective large-scale
and turbulent components (see Equation (2))

B(a, z) = B0(a, z) + Bt(a, z), (14)

F (a, z) = F0(a, z) + Ft(a, z). (15)

Upon assuming the same statistical properties for the compo-
nents of F (a, z) as those expressed in Equations (7) for B (r, z),
Equations (12) and (13) transform to

RB(v, u) = RB,0(v, u) + RB,t(v, u), (16)

RF (v, u) = RF,0(v, u) + RF,t(v, u) (17)
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with
RB,j (v, u) = 〈Bj (a, z) · Bj (a′, z′)〉 (18)

RF,j (v, u) = 〈Fj (a, z)Fj (a′, z′)〉 (19)

where j = ‘0’ or ‘t’ for the large-scale and turbulent components,
respectively.

The solution to our problem is reduced to solving
Equation (11) given the different autocorrelation functions; the
equation to be used for determining the dispersion function then
becomes

〈cos[ΔΦ(�)]〉 = 〈B · B(�)〉
〈B · B(0)〉 . (20)

2.3. Solution Using Gaussian Turbulent Autocorrelation and
Beam Profile Functions

In order to solve Equation (20) we must specify, at least to
some level, the characteristics of the different autocorrelation
functions, as well as the telescope beam profile. We therefore
define the following

RB(v, u) = RB,0(v, u) +
〈
B2

t

〉
e−(v2+u2)/2δ2

(21)

RF (v, u) = RF,0(v, u) +
〈
F 2

t

〉
e−(v2+u2)/2δ′2

, (22)

where the magnetic field and polarized emission autocorrela-
tions each have large-scale and turbulent (second term on the
right-hand sides) components. The correlation length scales for
the turbulent magnetic field and polarized emission are δ and δ′,
respectively, and, as is implied through Equations (21) and (22),
we assume the turbulence to be isotropic. Furthermore, δ and
δ′ are taken to be much smaller than the thickness of the cloud
(i.e., δ � Δ and δ′ � Δ). The beam profile is defined with

H (r) = 1

2πW 2
e−r2/2W 2

, (23)

where W is the beam “radius.”
Under these constraints and definitions Equation (11) can be

analytically solved to yield (see Equations (A6)–(A8))

〈B · B(�)〉 	
〈
B2

0

〉〈
F 2

0

〉 ⎛
⎝〈α(�)〉 +

√
2π

〈
B2

t

〉
〈
B2

0

〉
⎧⎨
⎩

[
δ3

(δ2 + 2W 2)Δ

]
e−�2/2(δ2+2W 2)

+

〈
F 2

t

〉
〈
F 2

0

〉 [
δ′′3

(δ′′2 + 2W 2)Δ

]
e−�2/2(δ′′2+2W 2)

⎫⎬
⎭

+
√

2π

〈
F 2

t

〉
〈
F 2

0

〉 [
δ′3

(δ′2 + 2W 2)Δ

]
e−�2/2(δ′2+2W 2)

⎞
⎠ , (24)

with 〈
B2

0

〉 = RB,0(0, 0) (25)〈
F 2

0

〉 = RF,0(0, 0) (26)

δ′′ = δδ′
√

δ2 + δ′2 (27)

and the normalized large-scale function

〈α(�)〉 =
∫ ∫ ∫ ∫

H (a)H (a′ + �)

{
2

Δ

∫ Δ

0

(
1 − u

Δ

) [
RF,0(v, u)〈

F 2
0

〉
] [

RB,0(v, u)〈
B2

0

〉
]

du

}
d2a′d2a. (28)

It is expected that this large-scale function will usually dominate
the other terms in Equation (24), since these all result from the

averaging of the turbulent components through the column of
dust probed by the corresponding polarization measurements.
Indeed, it is apparent that each of the turbulent contributions in
Equation (24) scales with a term such as

N−1 =
√

2πδ3

(δ2 + 2W 2)Δ
, (29)

where N is nothing more than the number of independent
turbulent cells (for the magnetic field in this case) contained
in the column of dust probed observationally, as could have
been intuitively guessed. We also note that for cases where the
telescope beam radius were to be much smaller than the size of
a turbulent cell (e.g., δ � W ) we recover

N = Δ√
2πδ

. (30)

The number of independent turbulent cells would thus be
accounted for by those cells that lie along the line of sight
through the thickness of the cloud at a given point on its surface,
as would also be expected intuitively (Myers & Goodman 1991).

Inserting Equations (24)–(28) into Equation (20) we can write

1 − 〈cos[ΔΦ(�)]〉 =
〈
B2

0

〉〈
F 2

0

〉
〈B · B(0)〉

(
[〈α(0)〉 − 〈α(�)〉]

+
√

2π

〈
B2

t

〉
〈
B2

0

〉
{ [

δ3

(δ2 + 2W 2)Δ

] [
1 − e−�2/2(δ2+2W 2)]

+

〈
F 2

t

〉
〈
F 2

0

〉 [
δ′′3

(δ′′2 + 2W 2)Δ

] [
1 − e−�2/2(δ′′2+2W 2)

]}

+
√

2π

〈
F 2

t

〉
〈
F 2

0

〉 [
δ′3

(δ′2 + 2W 2)Δ

] [
1 − e−�2/2(δ′2+2W 2)

])
.

(31)

The first term within parentheses on the right-hand side is,
as was previously stated, due to the large-scale structure in the
magnetic field and the polarized emission; it does not involve
turbulence. We can expand this term using a Taylor series with

〈α(0)〉 − 〈α(�)〉 =
∞∑

j=1

a2j �
2j , (32)

where the summation is performed only on even values for 2j ,
since 〈α(�)〉 is isotropic in � (see Section A.2).

Although the remaining terms in Equation (31) are all due to
turbulence, their respective contributions have, in part, different
origins. More importantly, it should be clear that the total
turbulent component is not only due to turbulence in the
magnetic field but can also arise from the presence of turbulence
in the polarized emission. For example, the third term within
parentheses on the right-hand side of Equation (31) can be
interpreted as a contribution due to random changes in polarized

emission at different positions in the cloud where the magnetic
field also changes orientation. It follows that the measured (i.e.,
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integrated) orientation associated with the polarized emission,
and therefore the deduced magnetic field orientation (i.e., the
polarization angle), will also accordingly fluctuate randomly.

The last term in Equation (31) seems to imply that the tur-
bulent component in polarized emission will contribute to the
turbulent angular dispersion even in cases where the magnetic
field is uniform (and does not have a turbulent component). But
this is an artifact of the way we analytically evaluate the disper-
sion function through Equation (31), which does not perfectly
mimic the way polarization measurements are accomplished
(see Section 4). In reality, polarization measurements are made
on a point-by-point basis, and the dispersion function is calcu-
lated through an average of (the cosine of) angle differences as a
function of the displacement � (see Equation (1) in Paper I) not
through the evaluation of an autocorrelation function such as
given in Equation (11). It follows that a perfectly uniform mag-
netic field could never lead to a measurable angular dispersion;
we will therefore not include in our analysis the corresponding
contribution in Equation (31).

Now consider the following

〈B · B(0)〉〈
B2

0

〉〈
F 2

0

〉 	 〈α(0)〉

	
∫ ∫ ∫ ∫

H (a)H (a′)
{

2

Δ

∫ Δ

0

(
1 − u

Δ

)

×
[

RF,0(v, u)〈
F 2

0

〉
] [

RB,0(v, u)〈
B2

0

〉
]

du

}
d2a′d2a,

(33)

where we have taken advantage of the fact that we expect
that the large-scale component 〈α (0)〉 dominates the turbulent
terms in Equation (24) (when � = 0), as was previously stated.
Because the autocorrelations present in the integrand of the one-
dimensional integral are normalized it follows that this integral,
which we denote as A

(∣∣a′ − a
∣∣) /2, will always be less than

Δ/2 and thus

〈B · B(0)〉〈
B2

0

〉〈
F 2

0

〉 	 1

Δ

∫ ∫ ∫ ∫
H (a)H (a′)A(|a′ − a|)d2a′d2a

≡ Δ′

Δ
� 1, (34)

where the equality to unity only holds when the large-scale
magnetic field and polarized emission are both uniform. The
quantity Δ′ can be interpreted as the effective thickness of the
cloud; this will be discussed in more details in Section 3.2.

Taking these considerations into account, Equation (31)
becomes

1 − 〈cos[ΔΦ(�)]〉 	
√

2π

〈
B2

t

〉
〈
B2

0

〉
⎧⎨
⎩

[
δ3

(δ2 + 2W 2)Δ′

] [
1 − e−�2/2(δ2+2W 2)

]

+

〈
F 2

t

〉
〈
F 2

0

〉 [
δ′′3

(δ′′2 + 2W 2)Δ′

] [
1 − e−�2/2(δ′′2+2W 2)

]⎫⎬
⎭ +

∞∑
j=1

a′
2j �

2j , (35)

with a′
2j = (

Δ/Δ′) a2j . If we limit ourselves to small enough
displacements such that � is less than a few times the beam
radius W, then the large-scale term becomes small enough to be
adequately described by the first term in the Taylor expansion

of Equation (32) and Equation (35) can be approximated to

1 − 〈cos[ΔΦ(�)]〉 	
√

2π

〈
B2

t

〉
〈
B2

0

〉
⎧⎨
⎩

[
δ3

(δ2 + 2W 2)Δ′

] [
1 − e−�2/2(δ2+2W 2)

]

+

〈
F 2

t

〉
〈
F 2

0

〉 [
δ′′3

(δ′′2 + 2W 2)Δ′

] [
1 − e−�2/2(δ′′2+2W 2)

]⎫⎬
⎭ + a′

2�
2, (36)

or alternatively

〈ΔΦ2(�)〉 	 2
√

2π

〈
B2

t

〉
〈
B2

0

〉
⎧⎨
⎩

[
δ3

(δ2 + 2W 2)Δ′

] [
1 − e−�2/2(δ2+2W 2)

]

+

〈
F 2

t

〉
〈
F 2

0

〉 [
δ′′3

(δ′′2 + 2W 2)Δ′

] [
1 − e−�2/2(δ′′2+2W 2)

]⎫⎬
⎭ + m2�2, (37)

where m2 = 2a′
2.

3. RESULTS

3.1. The Polarized Emission

Ideally one would intend to use Equation (36) for the
dispersion function (or alternatively Equation (37)) to determine
the ratio of the (square of the) turbulent to large-scale magnetic
field strength

〈
B2

t

〉/〈
B2

0

〉
. As was shown in Paper I, this dispersion

function is readily evaluated from polarization data and the
aforementioned ratio could be used to calculate, for example,
the large-scale magnetic field strength

〈
B2

0

〉1/2
through the

Chandrasekhar–Fermi equation (Chandrasekhar & Fermi 1953).
It should be clear, however, that in order to precisely achieve
such a goal we must find a way to determine other parameters
such as the turbulent correlation scales δ and δ′, the effective
cloud thickness Δ′, and the ratio of the turbulent to large-scale
polarized emission

〈
F 2

t

〉/〈
F 2

0

〉
.

The polarized emission, in particular, is problematic. This is
because we do not have direct information on the weighting
function F (r, z) or its integrated counterpart

F (r) =
∫ ∫

H (r − a)

[
1

Δ

∫ Δ

0
F (a, z)dz

]
d2a. (38)

Although the integrated polarized flux P (r) is contained in
polarization data sets obtained with dust continuum polarimeters
such as Hertz (Dotson et al. 2009), SCUBA (Matthews et al.
2009), and SHARP (Vaillancourt et al. 2008), it does not
correspond to the quantity defined in Equation (38). Instead
the polarized flux is observationally determined through the
measurement of the integrated Stokes parameters

Q(r) =
∫ ∫

H (r − a)

[
1

Δ

∫ Δ

0
Q(a, z)dz

]
d2a (39)

U (r) =
∫ ∫

H (r − a)

[
1

Δ

∫ Δ

0
U (a, z)dz

]
d2a (40)

with

P (r) =
√

Q
2
(r) + U

2
(r). (41)

Although these parameters will also exhibit large-scale and
turbulent components, they do not provide us with any means
for disentangling the turbulent contributions

〈
B2

t

〉
and

〈
F 2

t

〉
due

to the magnetic field and the polarized emission they contain.
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We must then resort to some approximation(s) if we are to make
any progress.

Perhaps the most obvious difference between the two tur-
bulent terms on the right-hand side of Equation (35) is that
the first one is of first order in the square of a turbulent to
large-scale strength ratio while the other is of second order.
If we assume that such a ratio is a fraction of unity, then
the second-order term can be neglected. This amounts to ne-
glecting the contribution of the turbulent polarized emission in
Equation (35); this is the line of attack we will use from now
on. We therefore write that

1 − 〈cos[ΔΦ(�)]〉 	
√

2π

〈
B2

t

〉
〈
B2

0

〉 [
δ3

(δ2 + 2W 2)Δ′

]

× [
1 − e−�2/2(δ2+2W 2)

]
+

∞∑
j=1

a′
2j �

2j ,

(42)

while for displacements � less than a few times W we keep only
the first �2 term in the Taylor expansion

1 − 〈cos[ΔΦ(�)]〉 	
√

2π

〈
B2

t

〉
〈
B2

0

〉 [
δ3

(δ2 + 2W 2)Δ′

]

× [
1 − e−�2/2(δ2+2W 2)

]
+ a′

2�
2, (43)

or

〈ΔΦ2(�)〉 	 2
√

2π

〈
B2

t

〉
〈
B2

0

〉 [
δ3

(δ2 + 2W 2)Δ′

]

× [
1 − e−�2/2(δ2+2W 2)

]
+ m2�2. (44)

Whether it is appropriate or not to neglect the turbulent polarized
emission is an open question, which could perhaps be adequately
investigated through simulations.

3.2. The Effective Cloud Thickness

We previously defined the effective cloud thickness Δ′
through the following relation:

〈α(0)〉 =
∫ ∫ ∫ ∫

H (a)H (a′)

{
2

Δ

∫ Δ

0

(
1 − u

Δ

)

×
[

RF,0(v, u)〈
F 2

0

〉
] [

RB,0(v, u)〈
B2

0

〉
]

du

}
d2a′d2a

≡ Δ′

Δ
� 1. (45)

We can get a sense of the nature of Δ′ by expressing 〈α (0)〉
with the Fourier transform of 〈α (�)〉 at � = 0 (see Section A.2
for more details)

〈α(0)〉 = 1

(2π )2

∫ ∫
‖H (kv)‖2

{
1

2π

∫ [
R0(kv, ku)〈

F 2
0

〉〈
B2

0

〉
]

×sinc2

(
kuΔ

2

)
dku

}
d2kv, (46)

where R0(kv, ku) is the Fourier transform of R0(v, u) =
RF,0(v, u)RB,0(v, u) and sinc(x) ≡ sin(x)/x. It should be ap-
parent that Equation (46) includes several effects that set the

value of Δ′. For the idealized case where the autocorrela-
tion R0(v, u) is uniform across the cloud, its Fourier trans-
form R0(kv, ku) is proportional to a Dirac distribution (more
precisely, R0(kv, ku) = (2π )3

〈
F 2

0

〉〈
B2

0

〉
δ(kv, ku)) and Δ′ = Δ,

as was previously stated. For more realistic cases, however,
R0(kv, ku) will have a finite width along ku and kv . As is
also discussed in Section A.2, the (square of) beam profile
‖H (kv)‖2 will filterR0(kv, ku) along kv and therefore reduce the
value of 〈α(0)〉 (i.e., Δ′ < Δ) through the exclusion of spectral
modes located outside the bandwidth subtended by ‖H (kv)‖2.
A more important filtering effect due to the finite spectral width
of R0(kv, ku) along ku is expected, however, as it is severely
truncated by the integration process through the cloud thick-
ness Δ. This is clearly assessed by the presence sinc2(kuΔ/2) in
Equation (46) and the subsequent integration on ku. Because of
the assumed large difference between the cloud thickness and
the beam radius (i.e., W � Δ) we expect that this effect will
dominate in determining the value of 〈α(0)〉.

If we now introduce Δku the spectral width of R0(kv, ku)
along ku with the following definition:

2ΔkuR0(kv, 0) ≡
∫

R0(kv, ku)dku, (47)

then we can further approximate (since Δku � Δ−1)∫
R0(kv, ku)sinc2

(
kuΔ
2

)
dku ∼ R0(kv, 0)

∫
sinc2

(
kuΔ
2

)
dku

∼ 2π

Δ
R0(kv, 0)

∼ 2π

Δ

[
1

2Δku

∫
R0(kv, ku)dku

]
.

(48)

Inserting this last relation into Equation (46), with the assump-
tion that the filtering due to the telescope beam is negligible
compared to that due to integration through the thickness of the
cloud, yields

〈α(0)〉 ∼
(

2π

Δ

) (
1

2Δku

) {
1

(2π )3

∫ ∫ ∫ [
R0(kv, ku)〈

F 2
0

〉〈
B2

0

〉
]

d3k

}

∼
(π

Δ

) (
1

Δku

)

≡ Δ′

Δ
. (49)

We then find
Δku ∼ π

Δ′ . (50)

Because of the way the Fourier transform relates the width of
R0(kv, ku) to that of R0(v, u), Δ′ can therefore be advanta-
geously interpreted as the width of the large-scale autocorrela-
tion function R0(v, u) (if we assume isotropy, then the width is
the same along u or v).

Unfortunately, we do not have access to R0(v, u) when
mapping the polarization of dust emission in a molecular cloud.
However, we can probably get a decent approximation for
Δ′ through the shape of the autocorrelation function of the
aforementioned cloud- and beam-integrated polarized flux P (r).
This function is defined with

〈P 2
(�)〉 ≡ 〈P (r)P (r + �)〉. (51)



No. 2, 2009 DISPERSION OF MAGNETIC FIELDS IN MOLECULAR CLOUDS. II. 1509

Figure 1. Normalized autocorrelation function of the integrated polarized flux as
calculated using the previously published 350 μm Hertz data for OMC-1 (Houde
et al. 2004; Hildebrand et al. 2009). We chose the width at half magnitude
to determine the value for the effective depth of OMC-1; we therefore have
Δ′ ≈ 3.′5.

Albeit this is an integrated quantity, it does provide a good
sense of the proportion of the cloud that contains the bulk of the
polarized flux, which is used as the weighting function for the
magnetic field in our analysis (see Equation (10)). We also note
that this autocorrelation is a function of the distance � on the
surface of the cloud, not through its depth. But this is consistent
with the isotropy assumption from which it is expected that
a molecular cloud will have similar characteristics through its
depth and across its surface. It therefore seems reasonable to

associate the width of 〈P 2
(�)〉 with the effective depth of the

cloud.
For the case of OMC-1 we use previously published Hertz

data6 (Houde et al. 2004; Hildebrand et al. 2009) to evaluate the
effective depth of the cloud. The result is presented in Figure 1,
where the normalized autocorrelation function of the integrated
normalized flux is shown. As indicated on the graph, we have
arbitrarily chosen the width at half magnitude as the value for Δ′;
we will therefore set Δ′ ≈ 3.′5 for OMC-1 for the calculations
that will follow. Also notably, we redefine N as follows (see
Equation (29)):

N = (δ2 + 2W 2)Δ′
√

2π δ3
. (52)

3.3. The Turbulent Correlation Length Scale, the Turbulent to
Large-scale Magnetic Field Strength Ratio, and the

Large-scale Magnetic Field Strength

Having estimated the effective depth of the cloud Δ′ from the
autocorrelation function of the integrated normalized flux, we
are now in a position to determine two fundamental parameters
that characterize magnetic fields and turbulence in star-forming
regions: the turbulent correlation length δ and the (square of the)

6 We use data obtained with Hertz instead of SHARP as the former cover a
larger spatial extent and allow us to determine 〈P 2

(�)〉 over a large enough
distance.

Figure 2. Dispersion function 1 − 〈cos[ΔΦ(�)]〉 for OMC-1 using the
350 μm data obtained with SHARP. Top: fit of Equation (43) (solid curve)
to the data (symbols) when plotted as a function of �2, the broken curve does
not contain the correlated part of the function (see the text); middle: same as top
but plotted as a function of �; bottom: the turbulent component of the dispersion
function (symbols), as obtained by subtracting the data points to the broken
curve in the middle graph, while the broken and solid curves are, respectively,
the contribution of the (assumed Gaussian) telescope beam alone (i.e., when
δ = 0) and the fit to the data (i.e., with δ = 7.′′3).

turbulent to large-scale magnetic field strength ratio
〈
B2

t

〉
/
〈
B2

0

〉
.

To do so we refer to Equation (43), which we write again here
for convenience

1 − 〈cos[ΔΦ(�)]〉 	
√

2π

〈
B2

t

〉
〈
B2

0

〉 [
δ3

(δ2 + 2W 2)Δ′

]

× [
1 − e−�2/2(δ2+2W 2)

]
+ a′

2�
2, (53)

which is valid when the displacement � is less than a few times
W.

Our plan consists of using the previously published 350-μm
SHARP polarization map of OMC-1 (Vaillancourt et al. 2008) to
evaluate the left-hand side of Equation (53) and fit our solution
to the problem (i.e., the right-hand side) to the data. There are
only three quantities to be simultaneously fitted for δ,

〈
B2

t

〉/〈
B2

0

〉
,

and a′
2, the first two being the parameters we are most interested

in at this time. More details concerning our data analysis will
be found in Appendix B.

We show in Figure 2 the result of our nonlinear fit to the
aforementioned data. In the figure, the top graph shows the
fit of Equation (53) (solid curve) to the data (symbols) when
plotted as a function of �2. The broken curve does not contain
the correlated part of the function, i.e., the function

√
2π

〈
B2

t

〉
〈
B2

0

〉 [
δ3

(δ2 + 2W 2)Δ′

]
+ a′

2�
2 (54)

is displayed to better visualize the integrated turbulent contri-
bution (i.e., the first term) to the dispersion in relation to the
large-scale component (i.e., a′

2�
2) when � is less than a few

times W. The middle graph of Figure 2 displays the same in-
formation as the top graph but plotted as a function of �. In the
bottom graph, we show the correlated turbulent component of
the dispersion function (symbols) obtained by subtracting the
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data to the broken curve in the middle graph, which in our model
(solid curve) corresponds to

b2 (�) ≡ 〈Bt · Bt(�)〉〈
B2

0

〉
=

√
2π

〈
B2

t

〉
〈
B2

0

〉 [
δ3

(δ2 + 2W 2)Δ′

]
e−�2/2(δ2+2W 2). (55)

Finally, the broken curve shows what would be the expected
contribution of the (assumed Gaussian) telescope beam alone
to the width of the turbulent component (i.e., when δ = 0
in the argument of the exponential). Although we performed
our analysis for a Gaussian turbulent correlation function, it is
rather unlikely that the autocorrelation function of the turbulent
magnetic field component fits this model. We therefore did not
use the first few points (i.e., for � � 0.′2) to fit Equation (53) to
the data and concentrated on larger values of � where it is more
likely to obtain a reasonable fit. Indeed, there is evidence from
the first few points, when � � 0.′2, in the middle and bottom
graphs of Figure 2 that the Gaussian turbulent autocorrelation
function assumption is incorrect, as expected.

A comparison of the expected contribution of the telescope
beam to the correlated turbulent component of the dispersion
function (broken curve in the bottom graph of Figure 2) with
the accompanying data reveals the imprint of the finite turbulent
correlation length scale δ in the relative excess detected in the
0.′1 � � � 0.′4 range. This imprint is also evident from the non-
zero integrated ratio of the (square of the) turbulent to large-scale
magnetic field strength ratio (i.e., b2(0) from Equation (55)) that
is evident in the data through the intercept of the broken curves
at � = 0 in the top and middle graph of Figure 2. As is seen in
Equation (55) this intercept will go to zero in the limit where
δ → 0 when the number of turbulent cells subtended by the
telescope beam N tends to infinity (see Equation (52)), i.e., in
cases where the turbulent component is basically completely
integrated out.

The results from our fit of Equation (53) to the dispersion
data are summarized in Table 1. Most notably, we measure the
turbulent correlation length to be δ ≈ 16 mpc (or 7.′′3 at 450 pc,
the distance we adopt for OMC-1), which implies that there are
on average N ≈ 21 independent turbulent cells contained within
the column of gas probed by our telescope beam. Furthermore,
since our fit for the square of the “integrated” turbulent to large-
scale magnetic strength ratio yielded b2(0) ≈ 0.013, then it
follows that

〈
B2

t

〉
〈
B2

0

〉 = Nb2(0)

≈ 0.28, (56)

where we used Equations (52) and (55). This quantity can be
inserted in the Chandrasekhar–Fermi equation (Chandrasekhar
& Fermi 1953) to evaluate the strength plane-of-the-sky com-
ponent of the large-scale magnetic field

〈
B2

0

〉1/2 =
√

4πρ σ (v)

[〈
B2

t

〉
〈
B2

0

〉
]−1/2

≈ 760 μG, (57)

where we used the same values as in Paper I for the mass
density ρ (i.e., a gas density of 105 cm−3 and a mean molecular

Table 1
Results from Our Fit of Equation (53) to the Dispersion Data for OMC-1

Fit Result Derived Quantities

δa b2 (0)b a
′
2 Nc

〈
B2

t

〉
/
〈
B2

0

〉
d

〈
B2

0

〉1/2e

(mpc) (arcmin−2) (μG)

16.0 ± 0.4 0.0134 ± 0.001 0.059 ± 0.001 20.7 0.28 ± 0.01 760

Notes.
a Corresponds to the fit result of 7.′′3 ± 0.′′2 at a distance of 450 pc assumed for
OMC-1.
b Corresponds to the linear intercept of the broken curves at � = 0 in the top
and middle graphs of Figure 2 (see Equation (55)).
c Calculated using Equation (52) with the SHARP beam radius W = 4.′′7 (or
FWHM = 11

′′
) and Δ′ = 3.′5.

d Calculated by multiplying the fit result for b2(0) by N (see Equations (52) and
(55)).
e Calculated using the Chandrasekhar–Fermi equation (see Equation (57))
assuming a density of 105 cm−3, a mean molecular weight of 2.3, and a velocity
dispersion of 1.85 km s−1. This estimate is probably not precise to better than
a factor of a few due to the uncertainty in the density and Δ′

.

weight of 2.3) and the one-dimensional velocity dispersion σ (v)
(i.e., 1.85 km s−1 as obtained from a representative H13CO+

J = 3 → 2 spectrum).
We are now in a better position to appreciate the importance

of adequately taking into account the signal integration pro-
cess. Indeed, failing to do so while using the Chandrasekhar–
Fermi equation would imply multiplying the value obtained in
Equation (57) by

√
N ≈ 4.6. This would yield a magnetic field

strength of approximately 3.5 mG, a value that is certainly pro-
hibitively high for OMC-1 (see Section 4.1).

4. DISCUSSION

4.1. The Turbulent Power Spectrum

The determination of the turbulent correlation δ length is
important for the characterization of turbulence in molecular
clouds. It is therefore desirable to compare our result of δ ≈
16 mpc for OMC-1 with other independent techniques or
analyses that seek to evaluate this quantity, or others related
to it, either observationally or theoretically.

A parameter that is very closely related to δ is the ambipolar
diffusion scale δAD at which the ionized and neutral compo-
nents of the gas decouple, and that may determine the cutoff
wavelength of the power spectrum of the turbulent component
of the magnetic field Bt. For this discussion, we therefore define
kAD = δ−1

AD such that the (isotropic) turbulent power spectrum
Rt(k) ≈ 0 for k > kAD. It follows that if δ−1 is some measure of
the width of Rt(k) (e.g., its standard deviation), then we expect
that δ � δAD.

Recent theoretical (Lazarian et al. 2004) and observational
studies have yielded estimates of the order of 1 mpc for δAD in
molecular clouds. Although an observational determination for
the ambipolar diffusion scale has yet to be obtained for OMC-
1, Li & Houde (2008) have measured δAD ≈ 2 mpc for the
molecular cloud M17. If we assume for the moment that this
value also applies to OMC-1, then we find that the turbulent
correlation length scale of approximately 16 mpc we measured,
which is a factor of many larger than the quoted ambipolar
diffusion cutoff scale, is consistent with the aforementioned
expectation that δ � δAD.

One should always keep in mind, however, that the value
for δAD determined by Li & Houde (2008) pertains to a
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“Kolmogorov-like” turbulent power spectrum whereas our value
for δ does not. That is, given a three-dimensional isotropic tur-
bulent autocorrelation function7 Rt(�) from which one evalu-
ates the correlation length δ, the corresponding power spec-
trum Rt(k) (of width δ−1) is specified by the Fourier transform
of Rt(�). The related Kolmogorov-like power spectrum is not
Rt(k), however, but is usually defined as RK(k) ≡ 4πk2Rt(k)
(Frisch 1995). It follows that if δAD is the ambipolar diffusion
scale pertaining to the Kolmogorov-like spectrum RK(k), then
we should define a turbulent correlation length δK that also per-
tains to RK(k) for a meaningful comparison.

For example, if we consider the idealization of the Gaussian
turbulent autocorrelation function of width δ used for our
analysis

Rt(�) = e−�2/2δ2
, (58)

then
Rt (k) = (2π )3/2 δ3e− 1

2 δ2k2
(59)

and the Kolmogorov-like power spectrum is given by

RK (k) = 2 (2π )5/2 δ3k2e− 1
2 δ2k2

. (60)

Calculating the (square of the) width δ−1
K of RK (k) (i.e., its

variance) we have

δ−2
K =

∫ ∞
0 k2RK (k) dk∫ ∞

0 RK (k) dk

= 3δ−2. (61)

Applying this relation to the result obtained for OMC-1, we
now find that δK ≈ 9 mpc. This value is now a factor of almost
2 closer to theoretically and observationally expected values
for δAD. Furthermore, we should also keep in mind that our
assumption of Gaussian functions is probably incorrect. The true
turbulent autocorrelation function could yield different values
for δ and δK, which may be closer to the expected value for δAD.

Another fundamental parameter for the characterization of
turbulence is the turbulent to large-scale magnetic field strength
ratio. With the expectation that the magnetic field will be tied
to the gas through flux freezing, which should apply for a
significant part of the spectrum where k < δ−1

AD, this parameter is
a measure of the relative amount of turbulent energy contained
in the gas. Our aforementioned determined value of 0.28 for
the square of the turbulent to large-scale magnetic field strength
ratio seems to indicate that turbulence does not dominate the
dynamics in OMC-1.

As is shown in Equation (57), the square root of this ratio is
used to calculate the strength of the plane-of-the-sky component
of the large-scale magnetic field with

[〈
B2

t

〉
〈
B2

0

〉
]1/2

≈ 0.53. (62)

Although our estimate for the plane-of-the-sky component of
the large-scale magnetic field of

〈
B2

0

〉1/2 ≈ 760 μG calculated
using this ratio cannot be precise to better than a factor of a few
because of uncertainties in the gas density and Δ′, this value is
reasonable and in line with other independent measurements.
For example, Crutcher et al. (1999) measured a line-of-sight

7 For this discussion, we do not restrict � to the plane of the sky, but allow it
to span the three dimensions.

magnetic field strength of 360 μG in OMC-1 using CN Zeeman
measurements, which probed densities that are comparable to
those corresponding to our observations. Incidentally, using
these values for the two components of the magnetic field we can
get an estimate of approximately 65◦ for the inclination angle
of the large-scale magnetic field to the line of sight. Again, this
value is consistent with the results obtained by Houde et al.
(2004) for this object using an independent technique (i.e., 49◦
in the Orion bar and 65◦ at a location a few arcminutes northeast
of Orion KL).

4.2. Weaknesses of the Technique

The use of the dispersion function in the polarization angle,
while adequately taking into account the process of signal inte-
gration implicit to dust polarization measurements, allowed us
to determine some of the fundamental parameters characterizing
magnetized turbulence in molecular clouds. Our analysis rests,
however, on a few assumptions that require some discussion:

1. Our definition for the integrated magnetic field B(r) (see
Equation (10)) does not perfectly mimic the measurement
process through which dust polarization data are obtained.
A consequence of this was noted in the discussion that fol-
lowed Equation (31), where it was found that our analysis
seemingly introduces a contribution to the angular disper-
sion that we do not expect to be present in actual data.
Although a hypothetical analysis that would precisely du-
plicate the measurement process (see Equations (39)–(41))
would be desirable, the quest for an analytical solution
renders this kind of idealization necessary. The same com-
ment could be made for the assumptions of isotropy, homo-
geneity, and stationarity used throughout our calculations.
Nonetheless, we expect that the results stemming from our
treatment of the angular dispersion function are successful
in the characterization of magnetized turbulence in molec-
ular clouds.

2. We assumed a Gaussian form for the autocorrelation func-
tions characterizing turbulence. This assumption is cer-
tainly incorrect and as a result it was not possible to obtain a
reasonable fit when using part of the data where � � 0.′2; the
shortcomings of our Gaussian model are most clearly ap-
parent in that region (see the discussion in Section 3.3). We
must therefore keep in mind that our estimates for the tur-
bulent correlation length δ and the turbulent to large-scale
magnetic field strength ratio are correspondingly uncertain
to some extent. On the other hand our fit is relatively ro-
bust, as small changes in the domain used for the fit (i.e.,
the range of values for �) do not lead to significantly differ-
ent solutions. The same is true if a term proportional to �4

is added to the large-scale function to be fitted (i.e., to the
right-hand side of Equation (53)).

3. Another source of uncertainty is our modeling of the
telescope beam using a Gaussian profile. Although the beam
size we quote is based on actual measurements taken from
chopped measurements on pointing sources (e.g., Uranus)
and is consistent with other SHARP observations, we do
not possess a detailed map of the telescope beam profile for
our set of observations. The aforementioned uncertainty
is a consequence of the fact that our determination of
δ stems, in part, from a comparison of the correlated
turbulent component of the dispersion function with the
assumed Gaussian telescope beam (see the bottom graph of
Figure 2). The significant difference observed between the
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two, however, makes it unlikely that the ensuing effect on
our estimate of the turbulent length scale is important.

4. Our analysis has shown that the presence of turbulence in
the polarized emission can bring about additional angular
dispersion to that due to turbulence in the magnetic field. As
was discussed in Section 3.1, however, our inability to dis-
entangle these two contributions to the dispersion has forced
us to introduce approximations that essentially brought
about the neglect of the turbulent polarized emission. It
should be noted that this implies that we overestimated
the amount of turbulence in the magnetic field (measured
through

〈
B2

t

〉/〈
B2

0

〉
, as obtained through our fit to the data),

which in turn translates into an underestimate of the large-
scale magnetic strength when using the Chandrasekhar–
Fermi equation. Although this effect is probably small, we
once again stress that the effect of turbulence in the polar-
ized emission could perhaps be advantageously investigated
and quantified through simulations.

It is interesting to note that although we limited ourselves
to the determination of only two parameters characterizing the
turbulent power spectrum, our technique can in principle be
used to achieve significantly more. We can verify this statement
by considering the Fourier transform b2 (kv) associated with the
turbulent component (see Equation (55), for example), which
can be determined from Equation (A12)

b2(kv) = 1〈
B2

0

〉‖H (kv)‖2

[∫
Rt(kv, ku)sinc2

(
kuΔ

2

)
dku

]
,

(63)
where Rt(kv, ku) is the Fourier transform of Rt(v, u) ≡
RF,t(v, u)RB,t(v, u). Since the spatial frequency component ku
of Rt(kv, ku) is eliminated through the corresponding integra-
tion, we can equally write

b2(kv) = 1〈
B2

0

〉‖H (kv)‖2Rt(kv), (64)

where Rt(kv) is now interpreted as the two-dimensional turbu-
lent power spectrum. Under the assumption of isotropy it would
be expected that Rt(kv) is similar in form to Rt(k), where Rt(k)
is the three-dimensional turbulent power spectrum defined in
Section 4.1. Since the left-hand side of Equation (64) can be

evaluated by taking a Fourier transform of the data (as shown
with the symbols in the bottom graph of Figure 2) and that the
beam profile H (kv) is presumably well characterized, it follows
that the turbulent power spectrum Rt(kv) can readily be deter-
mined through the inversion of Equation (64) (using a simple
Wiener optimal filter, for example).

Unfortunately our polarization map does not have enough
spatial resolution to allow us to perform this analysis (i.e., our
beam profile H (kv) is much too narrow in frequency space), but
there is no obvious reason why this should not be feasible with
higher resolution observations. A much better characterization
of the turbulent power spectrum would then result. We will
address this question in a subsequent publication.

5. SUMMARY

In this paper, we expanded our study on the dispersion of
polarization angles in molecular clouds and showed how the
effect of signal integration through the thickness of the cloud
as well as across the area subtended by the telescope beam
inherent to dust continuum measurements can be incorporated
in our analysis. We correctly accounted for its effect on the
measured angular dispersion and inferred turbulent to large-
scale magnetic field strength ratio. We also showed how to
evaluate the turbulent magnetic field correlation scale from
polarization data and applied our results to the molecular cloud
OMC-1. For this object, we find a turbulent correlation length of
δ ≈ 16 mpc, a turbulent to large-scale magnetic field strength
ratio of approximately 0.5, and a plane-of-the-sky large-scale
magnetic field strength

〈
B2

0

〉−1/2 ≈ 760 μG.
In future papers, we will extend our technique to study

the possibility for obtaining a detailed characterization of the
turbulent power spectrum, as well as the discussing evidence
for anisotropy in magnetized turbulence from dust polarization
data.
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APPENDIX A

DERIVATIONS

A.1. The Autocorrelation Function of the Integrated Magnetic Field

To obtain Equation (11) we start with

〈B(r) · B(r + �)〉 =
∫ ∫ ∫ ∫

H (r − a)H (r + � − a′)
[

1

Δ2

∫ Δ

0

∫ Δ

0
RF (v, u)RB(v, u)dz′dz

]
d2a′d2a (A1)

from Equations (10), (12), (13), u = |z′ − z|, and v = |a′ − a|. The integral

I (v) = 1

Δ2

∫ Δ

0

∫ Δ

0
RF (v, u)RB(v, u)dz′dz (A2)

can be transformed into a one-dimensional integral on account of the assumed stationarity of the functions present in the integrand
(i.e., they are solely a function of

∣∣z′ − z
∣∣, besides v). To accomplish this, after making the change of variable u = ∣∣z′ − z

∣∣, we
integrate over the square surface delimited by 0 � z � Δ and 0 � z′ � Δ along the linear path where −Δ � u � Δ. This path is also
perpendicular to a family of strips (along which u is constant) of infinitesimal area

dS = Δ
(

1 − |u|
Δ

)
du (A3)
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to first order in du. We then find that

I (v) = 2

Δ

∫ Δ

0

(
1 − u

Δ

)
RF (v, u)RB(v, u)du. (A4)

We can now further make the change of variables a → r−a and a′ → r−a′, which is then inserted with Equation (A2) into Equation
(A1) to yield

〈B · B(�)〉 =
∫ ∫ ∫ ∫

H (a)H (a′ + �)

[
2

Δ

∫ Δ

0

(
1 − u

Δ

)
RF (v, u)RB(v, u)du

]
d2a′d2a, (A5)

where any dependence on r is done away with since u and v are unaffected by this change of variables and we integrate over all of
space.

Equation (24) can be derived by first noting that

2

Δ

∫ Δ

0

(
1 − u

Δ

)
e−(v2+u2)/2δ2

du 	
√

2π

(
δ

Δ

)
e−v2/2δ2

(A6)

when δ � Δ. This result will arise for all terms containing a turbulent component (i.e.,
〈
B2

t

〉
and/or

〈
F 2

t

〉
) in Equation (A5).

Setting u = a′ + a and v = a′ − a we have

1

2W 2
(|a|2 + |a′ + �|2) +

1

2δ2
|a′ − a|2 = 1

4W 2
(|u + �|2 + |v + �|2) +

|v|2
2δ2

= |u + �|2
4W 2

+

(
δ2 + 2W 2

4δ2W 2

) ∣∣∣∣v + �

(
δ2

δ2 + 2W 2

)∣∣∣∣
2

+
�2

2(δ2 + 2W 2)
. (A7)

It follows from this relation, the Jacobian related to the coordinate transformation above, and Equation (23) that

∫ ∫ ∫ ∫
H (a)H

(
a′ + �

)
e−|a′−a|2

/2δ2
d2a′d2a = e−�2/2(δ2+2W 2)

4(2πW 2)2

[∫
e−u2/4W 2

du ·
∫

e
−( δ2+2W2

4δ2W2 )v2

dv

]2

=
(

δ2

δ2 + 2W 2

)
e−�2/2(δ2+2W 2),

(A8)

which is dependent on only � and not its orientation. Equation (24) follows from Equations (11), (21), (22), (25)–(28), (A6), and (A8).

A.2. The Length Scale of the Large-scale Component

We have used the region where the distance � is less than a few times the beam radius to fit the dispersion data to
Equation (43). It is therefore appropriate to inquire as to the validity of this procedure. To do so, we first note that the autocorrelation
function given by Equation (11) can be expanded with its Fourier transform as follows (with R (v, u) ≡ RF (v, u) RB (v, u)):

〈B(r) · B(r + �)〉 =
∫ ∫ ∫ ∫

H (a)H (a′ + �)

[
1

Δ

∫ Δ

−Δ

(
1 − u

Δ

)
R(v, u)du

]
d2a′d2a

=
∫ ∫ ∫ ∫

H (a)H (a′ + �)

{
1

Δ

∫ Δ

−Δ

(
1 − |u|

Δ

) [
1

(2π )3

∫ ∫ ∫
R(kv, ku)eik·xd3k

]
du

}
d2a′d2a

= 1

(2π )3

∫ ∫ ∫
R(kv, ku)

[∫ ∫ ∫ ∫
H (a)H (a′ + �)eikv ·(a−a′)d2a′d2a

] [
1

Δ

∫ Δ

−Δ

(
1 − |u|

Δ

)
eikuudu

]
d3k

= 1

(2π )3

∫ ∫ ∫
R(kv, ku)[H (kv)H (−kv)eikv ·�]

[
1

Δ

∫ Δ

−Δ

(
1 − |u|

Δ

)
eikuudu

]
d3k, (A9)

where the Fourier transform of a function is represented by simply replacing the spatial arguments by their k-space counterparts (e.g.,
R(v, u) � R(kv, ku)), and x = v + uez with v = a′ − a and u = ∣∣z′ − z

∣∣. But since

1

Δ

∫ Δ

−Δ

(
1 − |u|

Δ

)
eikuudu = 1

Δ2

∫ [∫
rect

( τ

Δ

)
rect

(
u − τ

Δ

)
dτ

]
eikuudu

= sinc2

(
kuΔ

2

)
, (A10)

with

rect
( τ

Δ

)
=

⎧⎪⎨
⎪⎩

1, |τ | <
Δ
2

,

0, |τ | >
Δ
2

,

(A11)
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we can write

〈B(r) · B(r + �)〉 = 1

(2π )2

∫ ∫
‖H (kv)‖2

[
1

2π

∫
R (kv, ku) sinc2

(
kuΔ

2

)
dku

]
eikv ·�d2kv, (A12)

where ‖H (kv)‖2 = H (kv)H ∗(kv) and sinc(x) ≡ sin(x)/x.
The effect of signal integration is made explicit in Equation (A12). More precisely, it is seen that the integration through the

thickness of the cloud heavily filters the spectral components along the line of sight to a small set symmetrically located about ku = 0
through the presence of sinc2(kuΔ) and the integration along ku, while the integration across the beam profile on the plane of the sky
further filters the signal with ‖H (kv)‖2. For a Gaussian profile as specified by Equation (23) we have

H (kv) = e− 1
2 W 2k2

v , (A13)

and it becomes clear to the only spectral components that remain in the integrated polarization map satisfy kv � W−1; the larger the
telescope beam the more heavily the signal is filtered spatially.

It should also be noted that the derivation of Equation (24), which was demonstrated in Section A.1, can also be achieved using
Equation (A12) under the assumption of Gaussian turbulent autocorrelation functions (see Equations (21) and (22)) with δ � Δ.

Restricting Equation (A12) to its large-scale component, assuming isotropy, and referring to Equation (28) we can write

〈α(�)〉 = 1

(2π )2

∫ 2π

0

∫ ∞

0
‖H (kv)‖2

[
1

2π

∫ R0(kv, ku)〈
F 2

0

〉〈
B2

0

〉 sinc2

(
kuΔ

2

)
dku

]
eikv� cos(φ)kvdkvdφ

= 1

2π

∫ ∞

0
‖H (kv)‖2J0(kv�)

[
1

2π

∫ R0(kv, ku)〈
F 2

0

〉〈
B2

0

〉 sinc2

(
kuΔ

2

)
dku

]
kvdkv. (A14)

where R0(v, u) = RF,0(v, u)RB,0(v, u) and J0(x) is the Bessel function of the first kind of order 0. Performing a Taylor expansion
about � = 0 using the identity

J0(x) =
∞∑

n=0

(−1)n
(x2/4)n

(n!)2
(A15)

it is clear that, as expected, a Taylor expansion of 〈α(�)〉 only contains terms of even power. Equations (A13) and (A14) show that,
once again, the beam filtering process will remove any spectral component with kv � W−1 in the large-scale dispersion function; its
characteristic length scale is therefore constrained by, and limited to a few times, the telescope beam radius. Because of this beam
filtering effect we expect the part of the spectrum at kv � W−1 to be dominant in Equation (A14), therefore limiting ourselves to a
domain where � is less than a few times the beam radius (i.e., kv� � 1) to fit the dispersion data with Equation (43) implies that

J0 (kv�) 	 1 − (kv�)2

4
, (A16)

which justifies the method used to model that data and extract the needed information from it.

APPENDIX B

DATA ANALYSIS

The data for OMC-1 from the SHARP polarimeter studied here have been previously published by Vaillancourt et al. (2008). For
our purposes we only include data that satisfy the p > 3σp criterion, where p is the polarization fraction and σp its uncertainty.

The angle differences between each and every pair of data points are calculated as

ΔΦij = Φi − Φj , (B1)

and the corresponding distance between each point
�ij ≡ |ri − rj |. (B2)

Note that �ij = �ji so that a map with N data points contains only N (N −1)/2 distinct differences. Also note that
∣∣ΔΦij

∣∣ is constrained
to be in the range [0, 90] deg.

These data are divided into separate distance bins with sizes corresponding to integer multiples of the grid spacing Δ� that results
after processing the SHARP map (Δ� = 2.′′37; note that a SHARP pixel is approximately 4.′′6 and the beam FWHM for our polarization
map is approximately 11′′); the bin for �k (which corresponds to k pixels) covers (�k − Δ�/2) � �ij < (�k + Δ�/2). Within each bin k
we thus calculate the dispersion function with

1 − 〈
cos

(
ΔΦij

)〉
k
, for all (�k − Δ�/2) � �ij < (�k + Δ�/2) . (B3)

The dispersion function is corrected for measurement uncertainty within each bin according to the uncertainty on each ΔΦij and
propagating the measurement uncertainties on both Φi and Φj available in the data set, as is explained below. However, since it is



No. 2, 2009 DISPERSION OF MAGNETIC FIELDS IN MOLECULAR CLOUDS. II. 1515

often the case that �ij < W for some values of ΔΦij and their corresponding uncertainty will be correlated. We have therefore used
the following relation for the measurement uncertainty:

σ 2(ΔΦij ) 	 σ 2(Φi) + σ 2(Φj ) − 2σ (Φi)σ (Φj )e−�2
ij /4W 2

, (B4)

which exhibits the right behavior when �ij = 0 and �ij � 2W . The data are then corrected for measurement uncertainty with

〈cos(ΔΦij )〉k,0 = 〈cos(ΔΦij )〉k
〈cos[σ (ΔΦij )]〉k

	 〈cos(ΔΦij )〉k
1 − 1

2 〈σ 2(ΔΦij )〉k
, (B5)

where 〈cos(ΔΦij )〉k,0 is the quantity used in our analysis and for the plots in Figure 2, and an even probability distribution was
assumed for the measurement uncertainty in ΔΦij .

Finally, the measurement uncertainties for the dispersion function 1 − 〈cos(ΔΦij )〉k,0 is determined with

σ 2[〈cos(ΔΦij )〉k,0] = 〈sin(ΔΦij )〉2
k〈σ 2(ΔΦij )〉k +

3

4
〈cos(ΔΦij )〉2

k〈σ 4(ΔΦij )〉k, (B6)

for all (�k − Δ�/2) � �ij < (�k + Δ�/2). These uncertainties are those plotted in Figure 2, most of them are too small to be seen in
the figure, especially at the smallest displacements.

APPENDIX C

LIST OF SYMBOLS

In this appendix we list and define symbols for important variables and functions appearing in the text, as well as given in parentheses
the number of the equation where they are first introduced or defined.

1. b: normalized magnetic field (Equation (3));
2. b: integrated normalized magnetic field (Equation (4));
3. b2 (�): correlated turbulent component (Equation (55));
4. B: total magnetic field (Equation (2));
5. B0: large-scale magnetic field (Equation (2));
6. Bt: turbulent magnetic field (Equation (2));
7. B: integrated total magnetic field (Equation (10));
8. B0: integrated large-scale magnetic field (Equation (10));
9. Bt: integrated turbulent magnetic field (Equation (10));

10. er : unit vector along r on the plane-of-the-sky (Equation (5));
11. ez: unit vector along the line of sight within a molecular cloud (Equation (5));
12. F: total polarized emission (Equation (4));
13. F0: large-scale polarized emission (Equation (15));
14. Ft: turbulent polarized emission (Equation (15));
15. F : integrated total polarized emission (Equation (38));
16. H: telescope beam profile (Equation (4));
17. J0: Bessel function of the first kind of order 0 (Equation (A15));
18. �: distance between two measurement positions (Equation (1));
19. N: number of independent turbulent cells in the gas column probed by the beam (Equations (29) and (52));
20. P: polarized flux (Equation (41));
21. P : integrated polarized flux (Equation (41));
22. Q: Stokes parameter (Equation (39));
23. Q: integrated Stokes parameter (Equation (39));
24. r: position vector on the plane-of-the-sky (Equation (5));
25. RB: autocorrelation function of the total magnetic field (Equation (12));
26. RB,0: autocorrelation function of the large-scale magnetic field (Equation (18));
27. RB,t: autocorrelation function of the turbulent magnetic field (Equation (18));
28. RF: autocorrelation function of the total polarized emission (Equation (13));
29. RF,0: autocorrelation function of the large-scale polarized emission (Equation (19));
30. RF,t: autocorrelation function of the turbulent polarized emission (Equation (19));
31. R: product of RF and RB (in normal space; Equation (A9));
32. R0: product of RF,0 and RB,0 (in normal space; Equation (46));
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33. RK (k): Kolmogorov-like power spectrum (Equation (60));
34. Rt: turbulent correlation function (Equation (58));
35. U: Stokes parameter (Equation (40));
36. U : integrated Stokes parameter (Equation (40));
37. W: telescope beam radius (Equation (23));
38. x: three-dimensional position vector (Equation (5));
39. z: position along the line of sight within a molecular cloud (Equation (5));
40. α (�): normalized large-scale function (Equation (28));
41. δ: turbulent correlation length scale of the magnetic field (Equation (21));
42. δ′: turbulent correlation length scale of the polarized emission (Equation (22));
43. δ−1

K : Kolomogorov spectral width (Equation (61));
44. Δ: maximum depth of a molecular cloud along the line of sight (Equation (4));
45. Δ′: effective depth of the molecular cloud along the line of sight (Equation (34));
46. Δku: spectral width of R0 (Equation (47));
47. ΔΦ (�): difference in polarization angles between two positions separated by � (Equation (1));
48. 〈· · ·〉: average of some quantity (Equation (1)).
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