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ABSTRACT

In this paper, we use our recent technique for estimating the turbulent component of the magnetic field to derive the
structure functions of the unpolarized emission as well as that of the Stokes Q and U parameters of the polarized
emission. The solutions for the structure functions to 350 µm SHARP polarization data of OMC-1 allow the
determination of the corresponding turbulent correlation length scales. The estimated values for these length scales
are 9.′′4 ± 0.′′1, 7.′′3 ± 0.′′1, 12.′′6 ± 0.′′2 (or 20.5 ± 0.2, 16.0 ± 0.2, and 27.5 ± 0.4 mpc at 450 pc, the adopted distance
for OMC-1) for the Stokes Q and U parameters, and for the unpolarized emission N, respectively. Our current
results for Q and U are consistent with previous results obtained through other methods and may indicate presence
of anisotropy in magnetized turbulence. We infer a weak coupling between the dust component responsible for the
unpolarized emission N and the magnetic field B from the significant difference between their turbulent correlation
length scales.
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1. INTRODUCTION

Magnetic fields play a crucial role in the formation of
stars through various processes, ranging from magnetic support
against gravitational collapse (see the reviews by Shu et al. 1999
and Mouschovias & Ciolek 1999) to magnetic braking (Nakano
1984). On the other hand, turbulence has also been suggested to
be a regulating factor in the development of the star formation
process (see the reviews by Mac Low & Klessen 2004 and
Elmegreen & Scalo 2004). The relative importance of these two
agents during the star formation process remains controversial
(e.g., Mouschovias & Tassis 2009; Crutcher et al. 2010).

The magnetic field threading a molecular cloud is composed
of a large-scale ordered component and a turbulent (or random)
one. Characterization of the latter, e.g., through dust polarization
measurements, is highly desirable (e.g., Lai et al. 2001, 2002,
2003; Crutcher et al. 2004). For example, with this information
one can use the method introduced by Chandrasekhar & Fermi
(1953) together with the estimates of gas density and line-of-
sight velocity dispersion in molecular clouds (from appropriate
molecular species, e.g., H13CO+; see Hildebrand et al. 2009 and
Houde et al. 2009) to derive the strength of the plane of the sky
component of the magnetic field in these regions (e.g., Houde
2004; Girart et al. 2006; Curran & Chrysostomou 2007; Attard
et al. 2009). It can also provide us with a measure of the turbulent
energy content of the gas.

A potential problem in using such a method is the necessity to
make assumptions on the structure of the large-scale component
of the field. These assumed models for the morphology of the
magnetic field, even though derived from a polarization map,
may still lead to imprecise values for the turbulent component as
the assumptions regarding the large scale will not follow its true
structure. Hildebrand et al. (2009) introduced a new technique
where the dispersion function of the polarization angle is used
to estimate the turbulent component of the field without making
any assumptions on the morphology of the large-scale magnetic

field. This method has been studied in more details by Houde
et al. (2009), where the effect of signal integration was taken into
account in the evaluation of the ratio of the turbulent to large-
scale magnetic field strength. This has also allowed, among
other things, the determination of the turbulent magnetic field
correlation length scale.

In this paper, we will use the methods introduced in Houde
et al. (2009) to compare the turbulent character of the polarized
emission (emanating from the dust component that is coupled
to the magnetic field) and that of the unpolarized emission by
estimating their turbulent correlation length scales. We will start
by deriving the cloud- and beam-integrated structure functions
for the Stokes Q and U parameters and the unpolarized emission
N in Section 2. We will then proceed with presenting the solution
for the structure functions assuming Gaussian profiles for the
beam and the turbulent autocorrelation functions of Q, U, and N.
In Section 3, we use the previously published 350 µm SHARP
polarization map of OMC-1 of Vaillancourt et al. (2008) to
determine the turbulent correlation lengths, and then use these
results to compare the turbulent character of the polarized
emission and the unpolarized emission and gain information
on the nature of the turbulence and magnetic field existing in
the region of interest.

2. ANALYSIS

2.1. The Cloud- and Beam-integrated Structure Function
of the Polarized Components of the Emission

The linear polarized emission is observationally determined
through the measurements of the cloud- and beam-integrated
Stokes parameters

Q(r) =
∫ ∫

H (r − a)
[

1
∆

∫
Q(a, z)dz

]
d2a (1)

U (r) =
∫ ∫

H (r − a)
[

1
∆

∫
U (a, z)dz

]
d2a, (2)
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with

P(r) =
√

Q
2
(r) + U

2
(r) (3)

the integrated polarized emission, H (r) the beam profile, and ∆
the maximum depth of the cloud along any line of sight (Houde
et al. 2009). The unpolarized emission N can be estimated
through the measurements of the total emission I and the
polarized emission P with

N(r) = I(r) − P(r). (4)

In analogy to Q and U, N is defined as

N (r) =
∫ ∫

H (r − a)
[

1
∆

∫
N (a, z)dz

]
d2a. (5)

The quantity for N (r) defined in Equation (5) is, however, not
directly measurable. We therefore use the following approxima-
tion:

N (r) $ I (r) − P (r). (6)

The two-dimensional integrals in Equations (1), (2), and (5) are
over all space. The z-axis is along the line of sight (unit basis
vector ez), and r is the two-dimensional polar radius vector on
the plane of the sky (unit basis vector er ) such that

x = rer + zez. (7)

Due to the mathematical similarity between the definitions of Q,
U, and N , the analyses will be shown for only one of them (the Q
component), the results for U and N follow in a straightforward
manner.

Similarly to the characterization of the magnetic field pre-
sented in Hildebrand et al. (2009) and Houde et al. (2009), we
will divide the emission—either polarized or unpolarized—into
ordered and turbulent components:

Q(a, z) = Q0(a, z) + Qt (a, z). (8)

In order to gain a quantitative estimate of the turbulent compo-
nent of the magnetic field in molecular clouds, it is necessary
to make some assumptions about the Stokes parameters (Q and
U) as well as the unpolarized emission N. More precisely, we
assume statistical independence between the ordered and turbu-
lent components. We will therefore have the following averages
for any two points x and y:

〈Q0(x)〉 = Q0(x)
〈Qt (x)〉 = 0

〈Q0(x) · Qt (y)〉 =〈 Q0(x)〉 ·〈 Qt (y)〉 = 0. (9)

Moreover, we assume that Q is stationary and isotropic (see
Equations (15) and (16) below). Note that the distance between
the two points where the Stokes parameter Q is measured is
confined to the plane of the sky unless otherwise stated.

The autocorrelation function of Q can be introduced as

RQ(v, u) = 〈Q(a, z)Q(a′, z′)〉, (10)

with u = |z′ −z| and v = |a′ −a|. Due to the assumed statistical
independence of the ordered and turbulent components, it is
possible to decompose these parts of the autocorrelation function
in the following way:

RQ(v, u) = RQ,0(v, u) + RQ,t (v, u), (11)

with
RQ,j (v, u) = 〈Qj (a, z)Qj (a′, z′)〉 (12)

in which j stands for “0” or “t” for the ordered and turbulent
parts, respectively.

In order to estimate the structure function of the Stokes
parameter, it is necessary to specify some characteristics of the
autocorrelation function, as well as the telescope beam profile.
Following Houde et al. (2009) we write

RQ(v, u) = RQ,0(v, u) + 〈Q2
t 〉e−(v2+u2)/2δ2

Q, (13)

with δQ the correlation length scale for the turbulent component
of Q. For the time being, we assume that U and N have turbulent
correlation length scales δU and δN , which are potentially
different from δQ. Moreover, these correlation lengths are both
assumed to be much smaller than the thickness of the cloud (∆).
The beam profile is also assumed Gaussian:

H (r) = 1
2πW 2

e−r2/2W 2
(14)

with W the beam radius.
For the structure function (Falceta-Gonçalves et al. 2008;

Hildebrand et al. 2009) of Q we start with the following
definition:

〈∆Q
2
(#)〉 ≡ 〈[Q(r) − Q(r + !)]2〉 (15)

= 2[〈Q2〉 − 〈Q Q(#)〉],

where we have used the aforementioned assumptions of isotropy
and stationarity and

〈Q Q(#)〉 ≡ 〈Q(r)Q(r + !)〉. (16)

Under these constraints, decomposing the ordered and turbulent
components of Q, and incorporating the analytical solution
provided in Appendix A of Houde et al. (2009) we can write

〈Q Q(#)〉 = 〈ξ (#)〉
2

+
√

2π
〈
Q2

t

〉
[

δ3
Q(

δ2
Q + 2W 2

)
∆

]

× e−#2/2 (δ2
Q+2W 2), (17)

where

〈ξ (#)〉 = 2
∫ ∫ ∫ ∫

H (a)H (a′ + !)

×
[

2
∆

∫ (
1 − u

∆

)
RQ,0(v, u)du

]
d2a′d2a. (18)

Inserting Equations (17) and (18) into Equation (15) we get

〈∆Q
2
(#)〉 = [〈ξ (0)〉 − 〈ξ (#)〉] + 2

√
2π〈Q2

t 〉

×
[

δ3
Q(

δ2
Q + 2W 2

)
∆

]
[
1 − e−#2/2 (δ2

Q+2W 2)]. (19)

The first term on the right-hand side of the above equation
(within brackets) is solely due to the ordered component of
the Stokes Q parameter and not turbulence. This term can be
expanded as a Taylor series (similarly to the analysis presented
in the Appendix of Houde et al. 2009):

〈ξ (0)〉 − 〈ξ (#)〉 =
∞∑

i=1

c2i#
2i , (20)
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Figure 1. Structure function 〈∆Q
2
(#)〉 using the previously published 350 µm SHARP polarization map of OMC-1 of Vaillancourt et al. (2008). Top: Equation (24)

(broken curve) is fitted to the data (symbols) and plotted as a function of #2; middle: similar to top but plotted as a function of #; bottom: the difference between the
data points and the fit of Equation (24) is shown as symbols with the broken curve depicting the fit of Equation (23) with δQ = 9.′′4 ± 0.′′1. The solid curve shows the
contribution of the telescope beam alone (i.e., when δQ= 0). The telescope beam is assumed to be Gaussian.

while the isotropy in # is incorporated by performing the
summation only on terms of even orders in #. For small
displacements satisfying # ! W, the ordered term can be
described adequately by keeping the first-order term in the
Taylor series. Thus, when # ! W we will have

〈∆Q
2
(#)〉 $ m2

Q#2 + 2
√

2π
〈
Q2

t

〉
[

δ3
Q(

δ2
Q + 2W 2

)
∆

]

×
[
1 − e−#2/2 (δ2

Q+2W 2)], (21)

where m2
Q = c2.

3. RESULTS

We use the previously published 350 µm SHARP polariza-
tion map of OMC-1 of Vaillancourt et al. (2008) to determine
the turbulent correlation lengths of the Stokes Q and U param-
eters and the unpolarized emission N. Therefore, we refer to
Equation (21) derived for the structure functions

〈∆K
2
(#)〉 = m2

K#2 + 2
√

2π
〈
K2

t

〉
[

δ3
K(

δ2
K + 2W 2

)
∆

]

×
[
1 − e−#2/2 (δ2

K +2W 2)], (22)

in which K stands for Q, U, or N. The coefficient m2
K belongs

to the first-order term of the Taylor series and δK represents

the turbulent correlation length scales of Q, U, and N. The
calculations are done using the SHARP beam radius W = 4.′′7
(or FWHM = 11′′; see Houde et al. 2009).

Figures 1, 2, and 3 show the results of our fits to the data
for Q, U, and N, respectively. In all three figures, the data are
shown with symbols. In the top graphs, the broken curve does
not contain the correlated turbulent term of the function

2
√

2π
〈
K2

t

〉
[

δ3
K(

δ2
K + 2W 2

)
∆

]

e−#2/2 (δ2
K +2W 2), (23)

but only includes the following two:

m2
K#2 + 2

√
2π

〈
K2

t

〉
[

δ3
K(

δ2
K + 2W 2

)
∆

]

. (24)

We fitted Equation (24) for values of 0.′5 ! # ! 0.′8 (more
details can be found in Appendix A of Houde et al. 2009). The
intercept of the fit at # = 0 shows the level of the turbulent
component (i.e., the second term in the above equation) that can
be compared to the first term, which depicts the contribution
from the ordered part when # ! W .

The middle plot shows the same information only plotted
as a function of #. We subtract the data points from the fit of
Equation (24) and show the results in bottom graphs (symbols).
The correlated turbulent term (Equation (23)) is fitted to the

3



The Astrophysical Journal, 749:45 (6pp), 2012 April 10 Chitsazzadeh et al.

Figure 2. Same as Figure 1, but for〈∆U
2
(#)〉. The turbulent correlation length is measured to be δU = 7.′′3 ± 0.′′1.

Table 1
Results from our Fit of Equation (24) to the Dispersion Data for OMC-1

δQ δU δN

9.′′4 ± 0.′′1 7.′′3 ± 0.′′1 12.′′6 ± 0.′′2
20.5 ± 0.2 mpc 16.0 ± 0.2 mpc 27.5 ± 0.4 mpc

data (broken curve) with δK as the only fitting parameter to
match the width of the function. Even though the autocorrelation
functions of Q, U, and N are assumed to have Gaussian patterns
and the data points in the top and middle graphs in all three
figures follow the fits quite well, it is quite unlikely that these
are realistic models for these functions. The solid curve in the
bottom graphs shows the contribution of the telescope beam
alone (i.e., when δK= 0 in the exponent of Equation (23)).

The results from the fits are tabulated in Table 1. We have
measured the turbulent correlation length scales of Stokes Q
and U, and N to be approximately 9.′′4 ± 0.′′1, 7.′′3 ± 0.′′1, and
12.′′6 ± 0.′′2 (or 20.5 ± 0.2, 16.0 ± 0.2, and 27.5 ± 0.4 mpc at
450 pc, the adopted distance for OMC-1).

4. DISCUSSION

The study and analysis presented in this paper seek to
characterize the magnetized turbulence in star-forming regions
in molecular clouds through the determination of the turbulent
correlation length scale δ.

Dust grains are present in a variety of astronomical envi-
ronments, such as molecular clouds, and also tend to couple
to the magnetic field threading these regions mainly through

their magnetic moment. Comparison of the turbulent correla-
tion length scales of different components of the dust emission
with the results from other techniques and methods is helpful in
achieving a better understanding of turbulence, magnetic fields,
and their interactions. The turbulent correlation length scales
are evaluated from the autocorrelation function of the emission,
which is the Fourier transform of the emission power spectrum,
and therefore δ being inversely proportional to the width of the
power spectrum yields valuable information. The turbulent cor-
relation length scales of the Stokes parameters of the polarized
emission (δQ $ 21 mpc and δU $ 16 mpc) are in agreement
with that of the turbulent magnetic field (δ $ 16 mpc) deter-
mined by Houde et al. (2009).

Another comparison can be made using the results presented
in Li & Houde (2008) for the turbulent power spectrum of
coexisting ion and neutral molecular species in M17. The spectra
for these two species share the same pattern in the inertial range,
which is expected due to the tight coupling between ions and
neutrals through flux freezing. However, their spectra cease to
follow a common pattern as they decouple through turbulent
ambipolar diffusion. The values determined for δQ and δU in
this paper are consistent with the analysis presented in Houde
et al. (2009), i.e., both δQ and δU are larger than the ambipolar
diffusion scale, δAD, which was recently measured to be 9.9 mpc
in Orion KL by Houde et al. (2011). These measurements
are also consistent with more general theoretical expectations
related to turbulent ambipolar diffusion (Lazarian et al. 2004;
McKee & Ostriker 2004; Falceta-Gonçalves et al. 2010; Tilley
& Balsara 2010) and other observational measurements (Li &
Houde 2008; Hezareh et al. 2010).
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Figure 3. Same as Figure 1, but for 〈∆N
2
(#)〉. The turbulent correlation length is measured to be δN = 12.′′6 ± 0.′′2.

On the other hand, there is a measurable difference between
the estimated value for δN ($28 mpc) and the correlation length
scales of the Stokes parameters, i.e., δQ and δU . This result
implies that the power spectrum of N is different from that of Q
and U. A lack or weakness of coupling between the magnetic
field and the dust particles responsible for the unpolarized part
of the emission can therefore be inferred from the results.

The Stokes parameters Q and U are each derived from
simultaneous measurements of two orthogonal polarization
states. Considering the uncertainties in our estimates of δQ and
δU , the difference between the values of these two parameters
is significant and reveals the presence of anisotropy, which
is expected for both incompressible (Goldreich & Sridhar
1995; Cho et al. 2002) and compressible MHD turbulence
(Cho & Lazarian 2003; Kowal & Lazarian 2010) and is
consistent with the observational results of Heyer (2008). More
precisely, it is predicted that the autocorrelation function of
magnetized turbulence will have a longer length scale in a
direction parallel to the magnetic field (as compared to an
orientation perpendicular to the field). We have measured the
mean polarization angle in OMC-1 to be approximately 30◦,
as can be visually verified with the polarization map of this
region presented in Figure 1(a) of Vaillancourt et al. (2008). This
implies that the Stokes U parameter will be dominated by the
emission polarized (approximately) along the mean polarization
vector and therefore perpendicular to the mean magnetic field.
We thus expect that it will have a shorter correlation length scale
compared to the Stokes Q parameter, which will more or less
be equally representative of emissions along and perpendicular

to the magnetic field. This is consistent with our results, as
presented in Table 1.

Obtaining a complete turbulent power spectrum is only
possible through high-resolution observations and sufficient
sampling in space, which are not available to us through
polarization measurements with SHARP. Such analyses have,
however, been recently conducted by Houde et al. (2011).

5. CONCLUSIONS

In this paper, we take advantage of the methods presented in
Hildebrand et al. (2009) and Houde et al. (2009) to determine
the turbulent structure functions of the Stokes parameters
(Q and U) of the polarized emission and unpolarized emission N.
Subsequently, the solutions are fitted to the previously published
350 µm SHARP polarization map of OMC-1 of Vaillancourt
et al. (2008) to estimate the turbulent correlation lengths of the
Stokes parameters δQ and δU and the unpolarized emission δN .
Our results are consistent with the results presented in Houde
et al. (2009, 2011) and may indicate presence of anisotropy in the
magnetized turbulence. We also infer a weak coupling between
the dust component responsible for the unpolarized emission N
and the magnetic field B from the significant difference between
their turbulent correlation length scales.
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