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ABSTRACT

We introduce an architecture for changing the polarization state of far-infrared through submillimeter radiation
that employs two Martin-Puplett interferometers. One interferometer is oriented with its beam-splitting grid
at an angle of 22.5◦ with respect to the Stokes Q axis. The second is oriented with its beam-splitting grid
at an angle of 45◦. By modulating one of the arms of each interferometer, it is possible to arbitrarily adjust
the polarization state that a polarization-sensitive detector measures when placed at the output of the device.
Because of this flexibility, one application of this device is as a calibrator for a polarimeter. In addition, it
is conceivable to use such a device as a modulator for a far-infrared/submillimeter polarimeter. As such, this
system has several advantages over a half-wave plate. First, the capability to measure circular polarization will
provide the instrument with a novel method for checking systematic errors, as the circular polarization of most
astronomical continuum sources is expected to be near zero. Second, such a device is easily adapted to work
at different wavelengths, thus facilitating the construction of far-infrared and submillimeter polarimeters with
multiple passbands. Finally, the small linear throws necessary for modulation eliminate the need for complicated
systems of gears and low temperature bearings that are common in wave plate systems and often prone to failure.
We present a Jones matrix analysis of this modulator architecture and compare the performance of this device
with that of a half-wave plate.
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1. INTRODUCTION

The polarization state of light can be completely defined by the Stokes parameters Q, U , and V . (Stokes I is
simply the total intensity of the radiation.) The set of all possible polarization states of light can be thought of
as points in a three-dimensional space having Q, U , and V as coordinate axes. In such a space, a set of points
sharing a common polarization,

P 2 = Q2 + U2 + V 2, (1)

defines the surface of a sphere called the Poincaré sphere. The Poincaré sphere is a useful tool for studying
polarization modulation that involves mapping between polarization states that have the same P . In this
space, the action of an ideal modulator is a simple rotation.1 Physically, a polarization modulation can be
realized by introducing a phase delay between orthogonal polarization states. On the Poincaré sphere, orthogonal
polarization states are those at opposite ends of a diameter. The geometrical effect of such a phase delay is a
rotation about the diameter connecting the two orthogonal states. The magnitude of the rotation is equal to
that of the phase delay.

Polarization modulation involves the transformation of one polarization state into a variety of others in a
systematic way so as to enable the measurement of the initial state with a reduction of systematic errors. A
convenient way of formulating the problem is to envision a detector that is sensitive to Stokes Q when projected
onto the sky in the absence of modulation. The polarization modulator then transforms the polarization state
to which the detector is sensitive.
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One method of polarization modulation involves the introduction of a phase delay between two orthogonal
linear polarization states. If this phase delay is equal to π (a path difference of half of a wavelength), the effect
is to reflect a linear polarization vector about the plane of symmetry of the device. If this phase is equal to one
quarter of a wavelength, mapping between linear and circular polarization can occur.

The typical application of such a polarization modulator is a wave plate.2 A wave plate consists of a piece of
birefringent material cut so as to delay one polarization component relative to the other by the desired amount
(generally either to one-half or one-quarter of the wavelength of interest). In this case, the phase difference is
fixed and the modulation is accomplished by rotating the wave plate.

Conversely, it is possible to design a polarization modulator that holds the angle of the modulator fixed,
but varies the phase. In this paper, we introduce a design for a polarization modulator that uses this strategy.
This modulator consists of two Martin-Puplett interferometers3 placed in series. Note that the Martin-Puplett
interferometers discussed here do not include polarizing grids on the input or output stages of the device, as they
often do in other applications. The first interferometer has its beam-splitting grid oriented at an angle of 22.5◦

with respect to the Stokes Q axis. By switching the phase difference the two polarizations between 0 and π,
the output signal toggles between Q and U . Adding a second interferometer at an angle of 45◦ allows switching
between either Q and −Q or U and −U depending on the state of the first interferometer.

There are several qualities that make this architecture a viable candidate technology for future astronomical
polarimeters operating in the far-infrared through millimeter parts of the spectrum. First, whereas a given wave
plate can be built to measure either circular or linear polarization but not both, the Martin-Puplett architecture’s
ability to cover the entire Poincaré sphere allows for the complete characterization of the polarization state.
Second, since the path difference between orthogonal linear polarization states is variable, these devices are easily
retuned for use at multiple wavelengths. Finally, this architecture requires only small linear translations that
will eliminate the need for complicated systems of shafts and gears that are common in wave plate modulators.
All of these qualities are beneficial to the future effort to measure the polarized flux of astronomical sources from
space-borne telescopes.

2. JONES MATRIX FORMULATION

Jones matrices4 are a convenient way to analyze radiation as it propagates through an optical system in situations
such as those of interferometers where phase is important. In the following analysis, we use a formulation that
is applicable for coherent radiation. In dealing with the general problem of partially coherent light, one can use
the density matrix formulation5; however, for the following problem concerning polarization modulation, it is the
coherent part of the formalism that is of interest. An additional caveat in the use of the Jones matrix formalism
concerns its inability to handle reflections that cause backward traveling light in the optical path. However, in
the Martin-Puplett architecture, the light never encounters a surface at normal incidence, and so this is not a
concern for this analysis.

Jones Matrices are 2×2 matrices that contain information about how two orthogonal electric field components
transform in an optical system. The input Jones vector is defined as follows:

|E〉 =
(
Ex

Ey

)
≡

(
EH

EV

)
(2)

The output vector from an optical system can then be represented by |Ef 〉 = J̄ |Ei〉 where J̄ is the vector
transformation introduced by the optical system. The power measured at a detector at the back end of such
a system is given by 〈Ef |J̄det|Ef 〉 = 〈Ei|J̄†J̄detJ̄ |Ei〉. The matrix J̄det is dependent on the properties of the
detector used to make the measurement.

In the Jones matrix representation, Stokes parameters, which are particularly important in the study of
polarization, are represented by the Pauli matrices and the identity matrix.

Ī =
(

1 0
0 1

)
, Q̄ =

(
1 0
0 −1

)
, Ū =

(
0 1
1 0

)
, V̄ =

(
0 −i
i 0

)
, (3)



Throughout this paper, we will use the convention that a bar over the Stokes symbol indicates its Jones matrix
representation. An un-barred Stokes parameter represents power that can be measured (e.g. Q = 〈E|Q̄|E〉).

These four Stokes matrices have the following multiplicative properties. Defining (S̄0, S̄1,S̄2, S̄3)≡(Ī , Q̄, Ū , V̄ ),
S̄0S̄α = S̄αS̄0 = S̄α for α ∈ (0, 1, 2, 3) and S̄jS̄k =

∑
l εjkliS̄l + δjkS̄0 for j, k, l ∈ (1, 2, 3). These four matrices

form a convenient basis for expressing Jones matrices. Table 1 Shows both the explicit Jones matrices and the
Stokes expansion for selected optical transformations. The mirror transformation, which can be expressed simply
as Q̄, sets the convention for how the (Ĥ, V̂ ) coordinate system is propagated through the optical system. Note
that for some structures, the Stokes expansion provides a convenient way to express optical elements. Successive
transformations can be calculated either by matrix algebra or by the Pauli algebra defined above.

Table 1. A summary of physical transformation of optical elements, their Jones matrix representations, and their Pauli
algebra representations are given.6 For the linear distance transformation, d represents the distance traveled. For the
mirror, a rotation of the mirror has no effect, and thus Q̄ is a general representation for this element. For the wire grid, θ
is the angle of the grid wires with respect to the Ĥ-axis. For the rooftop mirror, θ is the angle between the roofline and
the Ĥ-axis. For the wave plate, θ is the angle between the fast axis of birefringence and the Ĥ-axis, and ξ is half of the
phase delay introduced between the orthogonal polarizations.

Description Symbol Matrix Representation Stokes Expansion

Linear Distance J̄z(d)

(
exp (i2πd/λ) 0

0 exp (i2πd/λ)

)
Ī exp (i2πd/λ)

Mirror J̄M

(
1 0
0 −1

)
Q̄

Wire grid (ref.) J̄W R(θ)

(
cos2 θ sin θ cos θ

− sin θ cos θ − sin2 θ

)
1
2 (Q̄ + Ī cos 2θ + iV̄ sin 2θ)

Wire grid (trans.) J̄W T (θ)

(
sin2 θ − sin θ cos θ

− sin θ cos θ cos2 θ

)
1
2 (Ī − Q̄ cos 2θ − Ū sin 2θ)

Coord. rotation R̄(θ)

(
cos θ sin θ
− sin θ cos θ

)
Ī cos θ + iV̄ sin θ

Rooftop mirror J̄RT

(
cos 2θ sin 2θ
sin 2θ cos 2θ

)
Ī cos 2θ + iV̄ sin 2θ

Wave plate J̄W P (θ, ξ)

(
eiξ cos2 θ + e−iξ sin2 θ sin θ cos θ(eiξ − e−iξ)
sin θ cos θ(eiξ − e−iξ) eiξ sin2 θ + e−iξ cos2 θ

)
Ī cos ξ + i sin ξ(Q̄ cos 2θ + Ū sin 2θ)

2.1. Martin-Puplett Interferometer

A diagram of a Martin-Puplett Interferometer is shown in Figure 1. Light enters from the left and is split into
two orthogonal polarizations by the 45◦ grid. The two components of polarization are then sent to two roof top
mirrors which rotate the polarization by 90◦ with respect to the grid wires. The beams recombine at the beam
splitter and exit the device at the top. Such a device is useful for retarding one polarization with respect to the
other. This important property can be exploited to use this device as a polarization modulator.

We will examine this device using Jones matrices, defining the angle of the device to be the angle of the
beam-splitting grid as seen by the incoming radiation. We will first look at the case of an interferometer at a
rotation of 45◦ and then generalize to an arbitrary angle as was done above. For the simple case, the Jones
matrix representing this configuration, J̄MP (π/4), can be expressed as the sum of the Jones matrices for the
radiation in each of the arms of the interferometer.

J̄MP

(π
4

)
= J̄

(1)
MP

(π
4

)
+ J̄

(2)
MP

(π
4

)
(4)
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Figure 1. The propagation of the electric field components and the (Ĥ, V̂ ) coordinate axes through a Martin-Puplett
interferometer at an angle of π/4 are shown. When d1 = d2, this device behaves like a mirror. When there is a path
difference, it changes the polarization state of the incoming radiation.

In turn, each of these terms can be decomposed into a product of the Jones matrices of the individual elements
in each optical path.

J̄
(1)
MP

(π
4

)
= J̄WT

(π
4

)
J̄z(d1)J̄RT (0)J̄z(d1)J̄WR

(π
4

)
=

(
1 1
−1 −1

)
exp(i4πd1/λ)

2
. (5)

J̄
(2)
MP

(π
4

)
= J̄WR

(
−π

4

)
J̄z(d2)J̄RT (0)J̄z(d2)J̄WT

(π
4

)
=

(
1 −1
1 −1

)
exp(i4πd2/λ)

2
. (6)

Making the definition ∆ ≡ 4π(d2 − d1)/λ and setting d ≡ d1, we arrive at the following.

J̄MP

(π
4

)
=

1
2
ei4πd/λ

(
1 + ei∆ 1− ei∆

−1 + ei∆ −1− ei∆

)
(7)

Next, we derive an expression for a Martin-Puplett interferometer placed at an arbitrary angle θ. Recall that
the definition of θ we have chosen is the angle of the grid with respect to Ĥ for the radiation at the input



port. To do this, we transform into the coordinate system for which we have already solved the problem, apply
the transformation for J̄MP (π/4), and then transform back. In the case of the Martin-Puplett interferometer,
there is a subtlety. Because the rooftop mirrors take the form of the identity matrix in one reference frame,
they should function this way regardless of the orientation of the device. A consequence of this is that the
correct transformation of this device is not achieved by rotating the individual elements. In short, the angular
transformation matrix for this device should be the same as that for a grid. Setting χ = (θ− π/4), we note that

J̄MP (χ) = R̄†(−χ)J̄MP

(π
4

)
R̄(χ) (8)

J̄MP (χ) =
ei4πd/λ

2

(
(1 + ei∆) + (ei∆ − 1) sin 2χ −(ei∆ − 1) cos 2χ

(ei∆ − 1) cos 2χ −(ei∆ + 1) + (ei∆ − 1) sin 2χ

)
(9)

J̄MP (θ) = ei4πd/λ

[(
1 0
0 −1

)
1 + ei∆

2
+

(
cos 2θ sin 2θ
− sin 2θ cos 2θ

)
1− ei∆

2

]
(10)

J̄MP (θ) = ei4πd/λ

[
1
2
(1 + ei∆)Q̄+

1
2
(1− ei∆)R̄(2θ)

]
(11)

When both arms of the interferometer are at equal distances (∆ = 0), J̄MP (θ) = Q̄ exp (i4πd/λ). Note that this
is the same as a mirror reflection plus a linear distance. For a half-wave retardation, the first term in equation 10
drops out leaving only a pure rotation of the electric field vector. Finally, we wish to express the Martin-Puplett
matrix as a linear combination of Stokes matrices. Thus, we obtain

J̄MP (θ) = ei2π(d1+d2)/λ
[
Q̄ cos ξ + i sin ξ(Ī cos(2θ) + iV̄ sin(2θ))

]
(12)

Here, we have defined ξ ≡ ∆/2 for notational convenience.

Note that within a phase factor (which is irrelevant in the final measurement) J̄MP = Q̄J̄WP . This means
that the action of the Martin-Puplett modulator is equivalent to that of a wave plate (a relative retardation
between orthogonal linear polarization components) followed by a reflection (represented as the Jones matrix
Q̄).

2.2. Dual Modulators

We can write an expression for a modulator consisting of two Martin-Puplett interferometers having grid angles
relative to the Stokes Q axis of θ1 and θ2. The corresponding phase delays are ∆1 = 2ξ1 and ∆2 = 2ξ2.

J̄m(θ1, θ2, ξ1, ξ2) ≡ J̄MP (θ1, ξ1)J̄MP (θ2, ξ2) (13)

Note that the way we have configured the arrangement of interferometers, the light encounters the interferometer
at θ2 before the one at θ1. Using Equation 12, we get the following.

J̄m(θ1, θ2, ξ1, ξ2) = Ī cos ξ1 cos ξ2 + [iQ̄ cos 2θ2 + iŪ sin 2θ2] cos ξ1 sin ξ2 (14)
+[iQ̄ cos 2θ1 − iŪ sin 2θ1] cos ξ2 sin ξ1

−[Ī cos 2(θ1 + θ2) + iV̄ sin 2(θ1 + θ2)] sin ξ1 sin ξ2

This expression can be compared to that for dual wave plates where

J̄w(θ1, θ2, ξ1, ξ2) ≡ J̄WP (θ1, ξ1)J̄WP (θ2, ξ2) (15)

In this case, we find

J̄w(θ1, θ2, ξ1, ξ2) = Ī cos ξ1 cos ξ2 + [iQ̄ cos 2θ2 + iŪ sin 2θ2] cos ξ1 sin ξ2 (16)
+[iQ̄ cos 2θ1 + iŪ sin 2θ1] cos ξ2 sin ξ1

−[Ī cos 2(θ2 − θ1) + iV̄ sin 2(θ2 − θ1)] sin ξ1 sin ξ2



3. POLARIZATION MODULATION

3.1. The Single Modulator
In the following analysis, we assume that the detectors are sensitive to the difference between the power in two
orthogonal linear polarization states. For ideal detectors, this leads to J̄det = Q̄. It is thus the detector orientation
that defines the coordinate axes from which the Stokes parameters are measured. For a single modulator, the
signal at such a sensor is

〈Ef |Q̄|Ef 〉 = 〈Ei|J̄†MP (θ,∆)Q̄J̄MP (θ,∆)|Ei〉. (17)

Again, ∆ = 2ξ. Substituting Equation 12 into Equation 17 we find that the polarization signal one expects from
a single Martin-Puplett modulator is

〈Ef |Q̄|Ef 〉 = Q cos2 ξ + V sin 2θ sin 2ξ + (Q cos 4θ + U sin 4θ) sin2 ξ (18)

We note that this is exactly the same function that describes a wave plate. The proof follows:

J̄†MP Q̄J̄MP = (Q̄J̄WP )†Q̄(Q̄J̄WP ) = J̄†WP Q̄Q̄Q̄J̄WP = J̄†WP Q̄J̄WP (19)

For a single modulator (be it a wave plate or modulator) one can either modulate the angle of the relative
retardation axis or the relative retardation itself. In practice, if one wishes to modulate the the angle, a wave
plate is mechanically easier to rotate. Because the thickness of such a device is fixed, however, if one wishes to
modulate the relative phase of the two polarizations, it is more convenient to use a Martin-Puplett architecture.

In wave plate applications, one typically holds ξ = π/2. For this case, we recover the result for a half-wave
plate in which Q and U are modulated by Q cos 4θ+U cos 4θ. For a non-ideal half-wave plate, we find that with
ε ≡ ∆λ

λ π, ∆ = 2ξ = π + ε. To second order, this yields cos2 ξ = −ε2/2, sin2 ξ = 1 − ε2/2, and sin 2ξ = −ε. We
find that at the edges of typical far-infrared/submillimeter passbands (∆λ

λ ∼ 0.1), >90% of the total polarized
power is still contained in the linear polarization modulation term with ∼10% being converted to V and < 1%
appearing as the offset Q.

On the other hand, it is difficult to get efficient modulation with a single Martin-Puplett. Table 2 shows
several attempts to fix the angle and modulate the phase. For the case in which the modulator is aligned with
the detector’s axis, no modulation occurs. For successively larger angles, some modulation occurs, but in no case
are Q, U , and V completely modulated.

Table 2. The modulation of a single Martin-Puplett interferometer is described for four values of θ.

θ Signal Comment

0 Q No Modulation
π
16

Q cos2 ξ + V sin π
8

sin 2ξ + (Q + U) 1√
2

sin2 ξ V completely modulated. Q and (Q + U) cannot change sign.
π
8

Q cos2 ξ + U sin2 ξ + V√
2

sin 2ξ V completely modulated. Q and U cannot change sign.
π
4

Q cos 2ξ + V sin 2ξ Q and V completely modulated. U not measured.

3.2. The General Two-Element Modulator
Using a dual modulator gives additional degrees of freedom. For the Martin-Puplett architecture, this translates
to the ability to modulate and measure Q, U , and V . For the wave-plate architecture, dual modulators allows
for modulation over a broader frequency range.7 The polarization signal for two Martin-Puplett modulators is

〈Ef |Q̄|Ef 〉 = 〈Ei|J̄†m(θ1, θ2,∆1,∆2)Q̄J̄m(θ1, θ2,∆1,∆2)|Ei〉. (20)

The calculation of the elements of J̄†m(θ1, θ2,∆1,∆2)Q̄J̄m(θ1, θ2,∆1,∆2) is given in Table 3 . The left hand
column shows the factors that concern phase modulation, and the center and right hand column contains those
that concern angle modulation. Each line of the table represents a term of the polarization signal that consists
of the product of the factor in the left hand column and the corresponding angle factor.



Table 3. The functional form of the cases of dual Martin-Puplett interferometers and for dual wave plates.

Basis Function Dual Martin-Puplett Dual Wave Plate
1
4 (1 + cos ∆1)(1 + cos ∆2) Q Q
1
4 (1 + cos ∆1)(1− cos∆2) Q cos 4θ2 + U sin 4θ2 Q cos 4θ2 + U sin 4θ2
1
4 (1− cos∆1)(1 + cos ∆2) Q cos 4θ1 − U sin 4θ1 Q cos 4θ1 + U sin 4θ1
1
4 (1− cos∆1)(1− cos∆2) Q cos 4(θ1 + θ2) + U sin 4(θ1 + θ2) Q cos 4(θ2 − θ1)− U sin 4(θ2 − θ1)
1
2 (1 + cos ∆1)(sin∆2) V sin 2θ2 V sin 2θ2
1
2 (sin∆1)(1 + cos ∆2) V sin 2θ1 V sin 2θ1
(sin∆1)(sin∆2) sin 2θ1 (Q sin 2θ2 − U cos 2θ2) sin 2θ2 (Q sin 2θ1 + U cos 2θ1)
1
2 (sin∆1)(1− cos∆2) V sin 2θ1 −V sin 2(2θ2 − θ1)
1
2 (1− cos∆1)(sin∆2) V sin 2(2θ1 + θ2) −V sin 2θ2

3.3. Dual Martin Puplett Interferometers- Fixed Angles

We look at the specific example of θ1 = π/4, θ2 = π/8. This corresponds to placing in the optical path one
Martin-Puplett interferometer at an angle of π/8 followed by one oriented at angle of π/4. The functional form
is given in Table 4 for J̄m(∆1,∆2). This particular choice allows full modulation over the surface of the Poincaré
sphere.

Table 4. The functional form of two stage Martin-Puplett polarization modulator is given. Here, we have fixed θ1 = π/4
and θ2 = π/8.

Basis Function Coefficient
1
4 (1 + cos ∆1)(1 + cos ∆2) Q
1
4 (1 + cos ∆1)(1− cos ∆2) U
1
4 (1− cos∆1)(1 + cos ∆2) −Q
1
4 (1− cos∆1)(1− cos ∆2) −U
1
2 (1 + cos ∆1)(sin ∆2) 1√

2
V

1
2 (sin ∆1)(1 + cos ∆2) 0
(sin ∆1)(sin ∆2) 1√

2
(Q− U)

1
2 (sin ∆1)(1− cos ∆2) 0
1
2 (1− cos∆1)(sin ∆2) − 1√

2
V

4. MODULATION STRATEGY

For monochromatic radiation, modulation is simple. If we make the definition

A(∆1,∆2) ≡ 〈Ei|J̄†m(∆1,∆2)Q̄J̄m(∆1,∆2)|Ei〉, (21)

the linear Stokes parameters are simply

Q =
A(0, 0)−A(π, 0)

2
, U =

A(0, π)−A(π, π)
2

, V =
A(π/2, 0)−A(3π/2, 0)

2
. (22)



For this simple modulation strategy, the bandwidth is plotted in Figure 2 along with a similar curve for a
half-wave plate. The efficiency is determined by the fraction of the power that remains in linear polarization
and is a function of wavelength. Note that for narrow bandwidths (∆λ/λ ∼ 0.1), the performance of the dual
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Figure 2. The bandwidth for a dual Martin-Puplett system is compared to that of a half-wave plate. The curves are
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Martin-Puplett interferometers matches the efficiency of a half-wave plate. Such bandwidths are common in
far-infrared and submillimeter polarimetry.

This detection strategy is useful for systems having small ∆λ/λ; however it suffers from a similar problem as
a half-wave plate for wavelengths far from that for which the phase modulation has been optimized. In addition,
systematics may be introduced by the fact that the error in A varies. The error introduced for A(0, 0) will be
zero; that introduced for A(π, π) will be maximal.

A more sophisticated technique for modulation takes advantage of the intrinsic broadband capabilities of this
device. In reality, the electric field incident on the modulator can be decomposed into a linear combination of
electric field vectors having a continuous distribution of wave numbers (k).

|Ei〉 =
∫ ∞

0

ψ(k)eik(z−ct)|Ei(k)〉dk (23)

Here, ψ(k) is a function describing the bandpass of the instrument, and we have assumed propagation in the
z-direction.

The signal at the detectors (using a differencing scheme) will be a function of k1 and k2, the wavenumbers
corresponding to the delay in each of the two interferometers (i.e. ki = π/δdi, where δdi is the physical path
difference of the ith interferometer).



S(k1, k2) =
∫ ∞

0

∫ ∞

0

ψ∗(k′)ψ(k)ei(k−k′)(z−ct)〈Ei(k′)|J̄†m(k′)Q̄J̄m(k)|Ei(k)〉dk′dk. (24)

If ψ(k) is a slowly varying function, the first integration over the exponential will only be non-zero for k = k′.
This is equivalent to stating that the device is broadband. In this case, we have

S(k1, k2) =
∫ ∞

0

|ψ(k)|2〈Ei(k)|J̄†m(k)Q̄J̄m(k)|Ei(k)〉dk. (25)

The operator J̄†m(k′)Q̄J̄m(k) can be expressed in terms of a linear combination of Stokes parameters, the coeffi-
cients of which can be derived from the basis functions of Table 4. We then have

S(k1, k2) =
∫ ∞

0

|ψ(k)|2xk1,k2(k)Qdk +
∫ ∞

0

|ψ(k)|2yk1,k2(k)U dk +
∫ ∞

0

|ψ(k)|2zk1,k2(k)V dk (26)

xk1,k2(k) =
[
1 + cos

(
2πk
k2

)]
cos

(
2πk
k1

)
+
√

2 sin
(

2πk
k1

)
sin

(
2πk
k2

)

yk1,k2(k) =
[
1− cos

(
2πk
k2

)]
cos

(
2πk
k1

)
−
√

2 sin
(

2πk
k1

)
sin

(
2πk
k2

)

zk1,k2(k) =
1√
2

sin
(

2πk
k2

)
cos

(
2πk
k1

)

Here, Q, U , and V are not barred to indicate that they are Stokes parameters and not their corresponding
matrix representations. For most astrophysical applications of broadband polarimetry (i.e. polarization by dust
emission, polarization of the CMB), it is assumed that the polarization does not change within the band. Put
another way, what one measures in broadband polarimetry is the average Stokes parameters over a band. Each
measurement then can be written in terms of these average Stokes parameters.

S(k1, k2) = 〈Q〉
∫ ∞

0

|ψ(k)|2xk1,k2(k)dk + 〈U〉
∫ ∞

0

|ψ(k)|2yk1,k2(k)dk + 〈V 〉
∫ ∞

0

|ψ(k)|2zk1,k2(k)dk (27)

Here the bracketed quantities represent the Stokes parameters averaged over the band. If |ψ(k)|2 is measured,
these integrals can be calculated for various combinations of k1 and k2. A resulting fit can be done to determine
the Stokes parameters for a given measurement.

5. IMPLEMENTATION

A possible practical implementation strategy for a modulator for an astronomical polarization is shown in Fig-
ure 3. In this realization, the retarding action of each Martin-Puplett interferometer is accomplished by two
grids placed in front of two mirrors. Each grid/mirror pair accomplishes half of the desired retardation for each
stage. The grids in front of a single rooftop mirror in this setup each have the same angle with respect to the
optical coordinate system.

6. USE AS A CALIBRATOR

For experiments at long wavelengths such as those designed for measuring the polarization of the Cosmic Mi-
crowave Background (CMB), the long wavelengths and fast telescopes likely to be employed make dual Martin-
Puplett interferometers difficult to employ. However, in the laboratory, the ability of these devices to work at
room temperature may make them excellent calibrators. An input polarized signal can be transformed quite
easily to test the polarization response of a CMB polarization sensor. It can transform an initial state that is
linearly polarized into one that has most of its polarized power rotated into V . Using this technique, one can
simulate the low linear polarizations of the CMB in the laboratory.
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Figure 3. A variant of the dual Martin-Puplett polarization modulator is shown. Here, the action of each interferometer
is divided between two grid-mirror pairs that form the two rooftop devices. In this case, the path length through the
device is minimized. This helps minimize effects of changes in beam radius from one end of the modulator to the other
when used in a real optical system. In addition, the proximity of the grids to the mirrors will allow for easier registration
of the distances between them.8 The geometry of the beam path is also favorable in this design in that the input and
output beams are 180◦ apart. This allows for easier mechanical design.

7. SYSTEMATICS

In developing a polarization modulator, one must consider the possibility of instrumental effects introduced by
the action of the modulation. In a half-wave plate, such an effect arises from the absorption properties of a
birefringent dielectric. Loss tangents for light polarized along the fast and slow axis are generally different.
The result is a modulated signal that appears at twice the rotational frequency of the wave plate. For the
dual Martin-Puplett modulator, there are two important effects to consider. First, for different settings of the
translational stage, the illumination will potentially change, thereby introducing a spurious polarization signal.
This problem can be avoided by restricting the use of such modulators to slow optical systems in which the
beam growth through the modulator is minimal. The second concern involves the differential absorption of the
grids and the mirrors of the modulator. For the rooftop mirrors, the incident angle of the radiation is the same



for different modulator positions. Thus, the Fresnel coefficients for each of the two polarizations will remain
constant during the modulation process.

8. SUMMARY

We have described a new technique for polarization modulation and calibration applicable from the far-infrared
through millimeter parts of the electromagnetic spectrum. In the far-infrared through submillimeter where
bandpasses are typically ∆λ/λ ∼ 0.1, this device can be used in a similar manner to a half-wave plate. Broader
bandpasses may be accommodated using more complex modulation schemes. In the millimeter, it may be useful
as a calibrator for CMB missions.

The Martin-Puplett architecture provides a modulator that can be made robust, broadband, and easily
tunable to different wavelengths. In addition, it allows for the complete determination of the polarization state
of the incoming radiation by the measurement of Stokes Q, Stokes U , and Stokes V .
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