
Notes on SHARP observing scripts within IRC client
D. Dowell, 2006 Oct 27

Brief Description of Scripts
* SHARP_Standard – HWP/nodding sequence with each HWP in a different data file
 Single_Nod – Take data for a single nod with no HWP motion
* SHARP_Single_File – HWP/nodding sequence with each HWP in the same data file
 SHARP_Sweep – HWP sequence with each HWP in a different data file; no nodding
* Coarse Dither – sequence of 4 data files, each with a SHARP_Single_File-like nature
* Fine Dither – same as Coarse Dither
 Sky Dip – I don’t use this.

How to Run a Script
In the “IRC – Instrument Remote Control” window, find the “Commanding” window in
the upper left. Double click on “Observing Procedures”. That should bring up the list of
scripts. These scripts reside both on the client host irc/ directory and also in the
compressed client code which is downloaded from Goddard when there are new updates.
I believe the ones in irc/ are first in the search path, but Troy would have to check to be
sure.

Updating Scripts
To make sure that new changes to the script and parameter files are actually used, exit
and restart the IRC client. I don’t see why the IRC server would need to be restarted, but
you could try that, too (before restarting the client).

Troubleshooting
If the telescope doesn’t nod:

1) Make sure the “Chop Throw” parameter is > 0.
2) Maybe the IRC->UIP link is down. Here are Hiro’s notes for restarting it:

Log on to alpha1 as SYSTEM, and see if the service is already running by:
 $ show system
The process you are looking for is named "UIP Daemon." If it is not there, then
start a new one by:
 $ @ bigdisk:[hiro.uip.exe]uipd.com

If it looks like old script definitions are being used:

1) Exit and restart the client. Maybe even the server.
2) Maybe you have to be running sharcClientTest, not sharcClient.

IRC Name: SHARP_Single_FILE
script: kilauea% ~sharc/irc/polarimeterSingleFile.py
parameter file: kilauea%

~sharc/.irc/sharc_v1_5/resources/sharc/xml/default_comman
d_procedures.xml

The timing calculation within the script is as follows (all in seconds):

duration = “Time per HWP”; default 90, but adjustable

overhead = 20; predicted time before samples start writing to disk
slewtime = 5; time for telescope to settle after starting a nod command
hwptime = 5; time for HWP to settle after starting a move command
totalScans = number of HWP angles; default 4, but adjustable

totaltime = (duration + hwptime)*totalScans + overhead -

hwptime = 395 (default)
beamtime = (duration – 2*slewtime)/4 = 20 (default)

The observation sequence is:

1) Start totaltime second scan (first ~20 seconds not written to disk).
2) Start move to left beam; start HWP move.
3) Wait for overhead for first HWP, otherwise wait for hwptime.
4) Wait for beamtime in first left.
5) Start move to right beam.
6) Wait for (slewtime+beamtime*2) in right.
7) Start move to left beam.
8) Wait for (slewtime+beamtime) in second left.
9) Return to step (2) if doing more HWP angles.

IRC Name: Coarse Dither, Fine Dither
script: kilauea% ~sharc/irc/FourPointDither.py
parameter file: kilauea%

~sharc/.irc/sharc_v1_5/resources/sharc/xml/default_comman
d_procedures.xml

The operation of this script is straightforward. Four SHARP_Single_File’s are run at
four different dither positions. The dithering is done in bolometer coordinates:

xstart, xstep, ystart, ystep are user adjustable.

rotZero = 1.7
theta = (elev – rotZero)*3.141592653589/180.0
arcsecperpix = 4.63

dx = (xstart + {0, xstep})/10.0*arcsecperpix
dy = (ystart + {0, ystep})/10.0*arcsecperpix

daz = dx*cos(theta) + dy*sin(theta)
dza = -dx*sin(theta) + dy*cos(theta)

UIP> AZO daz
UIP> ZAO dza

One more thing is worth mentioning. The default setting of “Zen. Ang.” (zenith angle) is
-1, meaning that the script reads from the antenna computer. However, I have seen
intermittent failure of this communication. The user can override the value by entering a
positive number. Check the IRC/Java log to see what value the script ended up using.

