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This is fairly standard stuff but I borrow heavily from Dave Cole’s thesis() where he

has put together an excellent summary of key aspects of map-making. For simplicity I will

restrict the discussion to only one-dimension. It is very straightforward to add a second

dimension.

This argument is really best produced with pictures. If we get much deeper into this

then I can spend time putting together electronic drawings. But it is a lot of work that I do

not think is yet necessary.

I have been mathematically explicit in areas where I have thoroughly worked-out the

steps. In others I simply sketch (hand-wave) the general ideas where I have at least checked

that I am probably not completely crazy.

1. Statement of Problem

From a grid of sampled points on the sky we wish to construct the best estimate of the

real continuous sky image. That is, we want each point in our new map’s dense grid to have

the value we would have measured if we had actually pointed the polarimeter and telescope

at that point on the sky.

Assuming that we do not attempt any fancy super-resolution algorithms then the best

we can hope to extract from our data is the convolution of the sky with our telescope’s

beam. That is, if s(x, y) is the distribution of sky brightness, and b(x, y) is the point spread

function of our instrument then we will measure

t(x) = b(x) ∗ s(x) (1)

In reality we do not directly measure this value. Our goal is to recover t(x) after sampling

it at discrete points.
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2. Fourier analysis

If the discrete sampling is a regular pattern which continues to infinity in both directions

then we can write our measurements as

t′(x) = III
(x

l

)
· t(x), (2)

the product of the telescope image t(x) with the picket fence sampling function

III(x) =
∞∑

i=−∞

δ(x− i). (3)

Using the convolution theorem to transform to Fourier space we have

T ′(u) = l III(lu) ∗ T (u), (4)

where T (u) = B(u) · S(u), (5)

and T ′(u), T (u), B(u), and S(u) are the Fourier transforms of t′(x), t(x), b(x), and s(x),

respectively. The function T ′(u) is composed of an infinite number of copies T (u), one

centered at every value of u = i/l for all integer i.

A discussion of the Nyquist criterion is not really critical here, but I will add it for

completeness. Consider that B(u) is finite with half-width r. (This must be true because

it is the Fourier transform of b(x), which is itself the Fourier transform of the finite tele-

scope/instrument aperture. For a diffraction limited instrument this implies that r ∼ D/λ,

where D is the telescope diameter.) Since B(u) = 0 for u > r we also have T (u) = 0 for

u > r. If l is sufficiently small then the copies of T (u) in T ′(u) do not overlap:

l <
1

2r
≈ λ

2D
(6)

In other words, the copies do not overlap if the sampling spacing satisfies the Nyquist cri-

terion; l is less than half a beam width. We are very close to this criterion for SHARC/P

(l ≈ 4.7′′, 1/r ≈ 10′′) so hereafter I will assume it is true.

In this case we can recover T (u) by masking away all but the central copy of T ′(u) with

a boxcar of width l: Π(u) = 1 for |u| < l/2, Π(u) = 0 for |u| > l/2. Then

T (u) = Π(u) · T ′(u) (7)

The inverse Fourier transform yields

t(x) = sinc(πlx) ∗ t′(x) (8)
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So recovering t(x) only requires convolving the sampled data with sinc(πlx). For computa-

tional simplicity we can replace the sinc function with a gaussian of FWHM ≈ l. This has

little practical effect on the final answer. Note that if t′(x) represented our irregularly grid-

ded data then equation (8) would represent the method currently employed in sharcsolve

and sharp combine.

Aside 1: The spatial resolution resulting from this method is the larger of 2l or the

beamsize 1/r. That is, unless you are also Nyquist sampled, decreasing the beam size does

not result in increased spatial resolution. Neither does sampling beyond the Nyquist limit.

Aside 2: In two-dimensions we have a choice of pillbox shapes to mask out the central

copy. The Fourier transform of a rectangular pillbox is a two-dimensional sinc function:

sinc(πlxx) sinc(πlyy) . A circular pillbox results in an Airy function. If we are truly Nyquist

sampled then these two choices yield the same answer, since T (u) cuts-off before the edge of

any mask shape.

Aside 3: If T (u) truly cuts-off at u > r and the Nyquist criterion holds (r < 1/2l) then

the mask function can be allowed to cut-off at any u: r < u < 1/l − r. Additionally, this

cut-off does not need to be sharp as in a boxcar. One could use a mask which goes smoothly

from unity at u = r and u = −r to zero at u = 1/l − r and − 1/l + r (e.g. a cosine or

Hanning function). The transform of such a mask is wider than a sinc (or Airy) function and

has reduced sidelobes. A gaussian would be an even better approximation to this function

than to a sinc or Airy function.

Finally we must consider that our assumption of a regular grid is not true in the case

of SHARP. Here I will simply state (without proof) that the regularity of the grid is critical

to the Fourier method if we wish to achieve perfect image reconstruction. The irregular grid

causes significant aliasing which contaminates all spatial frequencies. It is not possible to

simply mask out these frequencies.

Re-gridding

One way around the problem of an irregular sample grid is to interpolate onto a regular

grid before carrying out the convolution operation. The success of this method is highly

dependent upon the accuracy of the initial interpolation. However, it will be sufficient if the

mean separation of the sampled data is smaller than the new grid spacing. In the case of

SHARP this is dependent upon the number of co-added files and the relative amount of sky

rotation captured.
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For the sake of argument let’s say we have sufficient data for an accurate regular grid

interpolation. Further assume we use a weighted average to interpolate from our sample grid

onto a regular grid:

z′(xo) =

n∑
i=1

z(xi) wi

n∑
i=1

wi

(9)

where z(x) is the data, z′(x) is the smoothed data, and wi is a decreasing function of distance

from the data point xi, to the new grid point xo. If wi were gaussian then equation (9) would

represent the method currently employed in sharcsolve and sharp combine.

We can re-write equation (9) as a convolution of the data z(x) with a kernel w(x)

z′(x) = w(x) ∗ z(x) (10)

We set t′(x) = z′(x) and follow with the Fourier method convolution:

t(x) = f(x) ∗ z′(x) = [f(x) ∗ w(x)] ∗ z(x) (11)

where f(x) = sinc(πlgx) or an appropriate gaussian replacement. Note that the width of

this function is given by the re-gridded pixel pitch lg, not the instrument pixel pitch l.

If f(x) and w(x) are both gaussian then their convolution can be replaced with a single

equivalent gaussian. Again, this is the algorithm currently employed in sharcsolve and

sharp combine.

Now What?

The big question that drove me to compose this document was how to choose the widths

of the smoothing kernels. The Fourier method makes it clear that the width should be a

function of the pixel-to-pixel spacing (or pitch). As long as the Nyquist criterion is satisfied,

the width of the smoothing kernel is dependent only on the pixel pitch and is completely

independent of the beam size.

Similarly, if we have interpolated onto a regular grid then we should smooth with a

kernel of width given by the pixel separation on the new grid regardless of the original

instrument parameters.

But what do we do if we do not have a regular grid? If we smooth before using the Fourier

method then the width of the interpolation kernel w(x) does not appear to be dependent on

any instrumental parameter such as pixel pitch or beam size. However, it seems reasonable
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that one should consider these parameters when choosing both the width of w(x) and the

regular grid spacing lg.

In the end, whichever width and pitch we choose, the final smoothing kernel f(x)∗w(x)

will have a width given by the quadrature sum of the other two widths. I do not expect that

this will differ much from a kernel given by the original instrument pixel pitch. To wave my

hands here, perhaps it is best to choose l2 ≈ l2g +l2w, where lw is the width of the interpolating

function w(x). This would then be equivalent to simply using the Fourier method, ignoring

the fact that the sampling grid is irregular.

Displaying the result

Lastly I should point out that the maps saved in the output FITS file resulting from

our analysis is not t(x) but

tfits(x) = III

(
x

lg

)
· t(x). (12)

The finite sampling has nothing to do with the analysis or smoothing algorithm chosen but is

simply a result of the digital nature of an electronic file. It is not necessary for the FITS data

pitch to be equivalent to lg, it is chosen for computational convenience. The image we show in

a map depends on the algorithm used to display tfits(x). FITS viewers tend to use individual

pixels for each value of x = ilg. I generally have IDL use a default interpolation algorithm

(triangulation ?) to generate smooth contours from tfits(x), but that can be modified with

some work.


