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1 Introduction

Since the early days of SHARP, the instrument has been plagued by correlated optical noise.
The strength of this noise varies in time but manifests as higher measured Q and U errors in
the output int.fits files produced by sharpinteg. This higher noise roughly appears in rows
9-12 and also more on the right side of the array. See Figure 1 for an example of this noise in
file #44718.

Figure 1: Example of the correlated noise for file #44718. Shown is the uncertainty in Stokes
Q. Light grey pixels are bad polarimetry pixels.

When multiple files are combined in sharpcombine, adjacent pixels are averaged together.
Because the noise in adjacent pixels is correlated in time, the propagation of errors into the
final combined map needs to account for these correlated errors. Versions of sharpcombine
up to and include 5.30 do not account for these correlated errors. The result is that the
polarization vectors obtained from the combined map have error bars that are too small.
This is why we have performed χ2 analysis and inflated the errors on output maps until now.
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1.1 Cause of the Correlated Noise

In May 2011 Giles Novak, Darren Dowell, and Nicholas Chapman performed a series of tests
at the CSO to diagnose the cause of the correlated noise. They tested turning the chopper
on and off, heating the HWP, removing the polarizing grids, banging on SHARP, having a
fan blow air on SHARP, and finally replacing the cold load mirrors on SHARP with warm
absorbers. This last test proved to eliminate the correlated noise.

The correlated noise can be seen in the raw timestreams plotted in Figure 2. Panel (a)
has the cold load mirrors installed while in (b) the mirrors were replaced with absorber. The
larger scatter in the data in panel (a) compared to (b) is evidence of the correlated noise. The
overall slope to the data in panel (b) is not relevant to the discussion of correlated noise.

Figure 2: Timestream of the raw data in pixel (11,10) for two files. a) File #53984 with
the cold load mirrors installed. b) File #54007 with the mirrors replaced by absorber. The
vertical axis range is identical in each panel, even though the absolute values differ.

The correlated noise can be seen more clearly by taking the Fast Fourier Transform (FFT)
of each timestream, as shown in Figure 3. Clearly, the presence of the cold load mirrors in
panel (a) adds additional noise in the 0−2 Hz range. This noise is called optical noise because
it arises from the optical path within the instrument. For the December 2011 SHARP run, the
mirrors were replaced by warm absorbers. This eliminated the correlated noise but reduced
the sensitivity somewhat.

2 Covariance in sharpinteg

Because the correlated noise is a random noise, it cannot be easily removed in software.
However, it is possible to correctly account for the noise when reducing data. The first step
is to compute the covariance between pixels in sharpinteg. The correlated noise between
pixels is really just another way of talking about the covariance between pixels. Using the basic

2



Figure 3: FFT of the data from Figure 2.

properties of covariances and making some simple assumptions we can derive the equations
needed. Stokes Q is defined as Q = 0.5 × (HWP1 − HWP3), where HWP1 is the average
chopper- and nod-demodulated value of H − V , computed for half-wave plate angle 1. The
covariance in Q for two pixels x and y can be expanded:

cov(Qx, Qy) =
1
4

cov(HWP1x −HWP3x,HWP1y −HWP3y) (1)

=
1
4

[
cov(HWP1x,HWP1y)− cov(HWP1x,HWP3y)−

−cov(HWP3x,HWP1y) + cov(HWP3x,HWP3y)
]
. (2)

Since the four HWP angles are observed consecutively, there is no reason to assume that
the HWP signal at the beginning of a file is correlated with the HWP signal later in the file.
Therefore, the 2nd and 3rd terms are assumed to be zero. As shown in § 1.1 the correlated
optical noise is a random noise, justifying this assumption. HWP1x is the average value of
the left nod minus the average value of the right nod for the demodulated H − V data for
HWP angle 1. Therefore, the term cov(HWP1x,HWP1y) can also be expanded:

cov(HWP1x,HWP1y) = cov(L1x −R1x, L1y −R1y) (3)
= cov(L1x, L1y)− cov(L1x, R1y)−

cov(R1x, L1y) + cov(R1x, R1y) (4)
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where L and R are the left and right nods, respectively. Again we can assume the 2nd and 3rd
terms are zero since the samples comprising the left and right beams are completely different
and they occur at different times within a file. A similar expansion for cov(HWP3x,HWP3y)
can also be derived.

The final equation for the covariance in Q is then:

cov(Qx, Qy) =
1
4

[
cov(L1x, L1y) + cov(R1x, R1y) + cov(L3x, L3y) + cov(R3x, R3y)

]
. (5)

The variables L1x, L1y, etc are themselves average quantities of N individual chopper-
demodulated data points (∼ 1 Hz rate). To clarify how one computes terms like cov(L1x, L1y)
consider two generic data sets xi and yi with N points each. These are meant to represent
data time streams, e.g., for adjacent pixels. The variance of the sample mean x̄ is:

var(x̄) =
1
N

1
N − 1

∑
(xi − x̄)2 (6)

Simiarly, the covariance of the sample means x̄ and ȳ is:

cov(x̄, ȳ) =
1
N

1
N − 1

∑
(x− x̄)(y − ȳ) (7)

where x̄ and ȳ are the mean x and y. Note that in the limit that x = y, this formula for
covariance reduces to the familiar formula for variance of the mean. The sum in Equation 7
is over all the ‘good’ samples in the left or right beam. A ‘good’ sample is one which is not
rejected by Chauvenet’s criterion in either pixel x or y (see memo [1]). In this way, terms like
cov(L1x, L1y) in Eq. 5 can be computed in sharpinteg. An equation similar to Equation 5
can also be derived for cov(Ux, Uy).

We modified sharpinteg to output another extension to the standard int.fits file. The
extension is a binary FITS data table and has the name COVAR. The data table simply lists
the covariance in Q and U for every pair of pixels x, y. By definition, cov(x, y) = cov(y, x).
Since a SHARP file is a 12× 12 array, the data table has 144× 144 = 20, 736 lines. Figure 4a
shows the median covariance in each pixel for file #44718. Comparing it to Figure 1 shows
that the covariance tends to be higher in the same regions where the noise in higher.

2.1 Covariance in I

Why do we not consider the covariance in the I map? I is the horizontal plus vertical
polarization data. We know that this quantity varies with time because the sky brightness
varies in time. Furthermore, the sky is much brighter than our sources. The resultant I maps
made by sharpinteg looks sensible because we compute the left nod - right nod, L−R, which
helps to remove the variations in sky brightness. The background subtraction algorithm in
sharpcombine further corrects for the varying sky brightness. In sharpinteg the variation
in sky brightness is stronger than the optical noise, so computing the covariance in I leads
to a roughly uniform map that is similar to the standard deviation in the I value computed
from the four HWP angles. Therefore, we ignore the covariance in I.
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Figure 4: Two maps of the median covariance in Q. (Left) Covariance of each pixel with
respect to every other pixel, where the median value is plotted. (Right) Covariance of each
pixel with respect to its row. Light grey pixels are bad polarimetry pixels.

3 Covariance in sharpcombine

sharpcombine creates an output image from a stack of input sharpinteg files. These input
files do not all completely overlap, so sharpcombine registers them onto a larger grid with
higher resolution. For each output grid point, sharpcombine computes the weighted average
of nearby sharpinteg pixels, where the weighting factors take into account both the variance
and the distance from the grid point [4]. The output image, I, at any grid point (u, v) and
its variance are:

I(u, v) =
∑

n

∑
i ginwinIin∑

n

∑
i ginwin

(8)

σ2
I (u, v) =

∑
n

∑
i g

2
inwin

[
∑

n

∑
i ginwin]2

(9)

where gin are the gaussian weighting factors, win are the inverse of the variances, and Iin is
the value of the input image for each pixel, i, and each file, n. The sum is performed over all
input images n and all pixels i within a given radius of (u, v). These equations are correct,
assuming the pixels i are not correlated with each other. Since we know such correlations
exist, they need to be accounted for to properly compute the weighted average and error.
We modified sharpcombine to accept a -cov flag that will read and utilize the covariances
computed by sharpinteg. How this happens is described below.

3.1 Theory of Optimal Estimators

Assume we have a number of measurements x = x1, x2, . . . , xn, each of which is an estimate
of a quantity f . The value of f can then be estimated by the linear combination f =
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b1x1 + b2x2 + . . . + bnxn. We further have the constraint that b1 + b2 + . . . + bn = 1. What
are the factors b = b1, b2, . . . , bn that will produce the optimal (minimum variance) estimate
of f? This is a known problem in statistics with a solution (see, e.g. § 3.4.3 of [8]). It has also
been solved for the case of extinction mapping using the method of Lagrange multipliers [5].
For two measurements the solution is:

(b1, b2) =
(

σ22 − σ12

σ11 + σ22 − 2σ12
,

σ11 − σ12

σ11 + σ22 − 2σ12

)
(10)

where σ11 is the variance of x1, σ22 is the variance of x2, and σ12 is their covariance. The
generalized Gauss-Markov theorem writes the solution in matrix form for an arbitrary number
of parameters [2]:

f =
W T C−1x

W T C−1W
, (11)

where C−1 is the inverse of the covariance matrix (defined below), x is a vector of the param-
eters x1, . . . , xn, and W and W T are the design matrix and its transpose respectively. For
our purposes the design matrix is simply a vector of ones.

It is straightforward to derive Equation 10 from Equation 11. Starting with the covariance
matrix and its inverse:

C =
[

σ11 σ12

σ12 σ22

]
(12)

C−1 =
1

σ11σ22 − σ2
12

[
σ22 −σ12

−σ12 σ11

]
(13)

where we have taken advantage of the fact that σ21 = σ12 (another property of covariances)
and just used σ12. The determinant, σ11σ22−σ2

12, appears in the numerator and denominator
of Eq. 11, thus it will cancel out (unless your determinant is zero!). Therefore, we have
neglected this factor in the derivations below. The numerator of Eq. 11 can be written:

W T C−1x = [ 1 1 ]
[

σ22 −σ12

−σ12 σ11

] [
x1

x2

]
(14)

= [ 1 1 ]
[

σ22x1 − σ12x2

σ11x2 − σ12x1

]
(15)

= (σ22 − σ12)x1 + (σ11 − σ12)x2 (16)

Similarly, the denominator of Eq. 11 is:

W T C−1W = [ 1 1 ]
[

σ22 −σ12

−σ12 σ11

] [
1
1

]
(17)

= [ 1 1 ]
[

σ22 − σ12

σ11 − σ12

]
(18)

= σ11 + σ22 − 2σ12 (19)
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Eq. 11 can thus be written:

f =
σ22 − σ12

σ11 + σ22 − 2σ12
x1 +

σ11 − σ12

σ11 + σ22 − 2σ12
x2 (20)

which are the same coefficients given in Eq. 10.

3.1.1 Variance

For a generic linear equation f = b1x1 + b2x2 + . . . + bnxn, the variance on f can be written
as:

σ2
f = bT Cb, (21)

where C is the covariance matrix for the xi. For example, when n = 2, f = b1x1 + b2x2 and
the variance is:

σ2
f = bT Cb (22)

= [ b1 b2 ]
[

σ11 σ12

σ12 σ22

] [
b1

b2

]
(23)

= b2
1σ11 + b2

2σ22 + 2b1b2σ12 (24)

Note that the familiar result could also be obtained by propagation of errors on f .

3.2 Application to sharpcombine

Implementing the Gauss-Markov theorem into sharpcombine would be straightforward ex-
cept for the use of the gaussian weighting factors, g. Because these gaussian factors weight
by distance instead of statistical uncertainty, it is not obvious how to include them in the
formalism from the previous section. However, we can make a reasonable guess for how to
compute the errorbars with gaussian weighting by distance. For simplicity we will consider
the case of two measurements. If we make the substitutions σ11 → σ11/g1, σ22 → σ22/g2, and
σ12 → σ12/

√
g1g2, Eq. 10 can be written as:

(b1, b2) =
(

g1σ22 −
√

g1g2σ12

g2σ11 + g1σ22 − 2
√

g1g2σ12
,

g2σ11 −
√

g1g2σ12

g2σ11 + g1σ22 − 2
√

g1g2σ12

)
, (25)

where we multiplied both the numerator and denominator by g1g2. Notice that in the limit
σ12 = 0, this is identical to the coefficients in Eq. 8 (after also dividing the numerator and
denominator by σ11σ22).

Equation 25 can alternatively be derived by changing the design matrix to be W T =
[
√

g1
√

g2]. I am not as familiar with the theory of the design matrix, but I think this is
equivalent to setting the constraint g1b1+g2b2 = 1, where before the constraint was b1+b2 = 1.

The variance is still given by Equation 21, but note that the gaussian weighting factors gi

are incorporated into b and do not appear in the covariance matrix.
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3.2.1 Implementation

There are five functions in sharpcombine that need to be altered to work with the covariances
in addition to the image errors. They are:

atten() This function corrects for opacity
linearbgnd2() Background subtraction (errors scaled by normalized slope)
instrumpol2() Subtract i.p. (errors in Q,U inflated by error in I)
Rotate() Rotate images from sky frame to raw frame
gauss smooth() Gaussian smoothing

The first four are simple bookkeeping where changes in errors are also applied to the
covariances. The last function involves using the equations above. For output grid point
(u, v), the nearby pixels within a given radius are found. A covariance matrix, C, is created
from these pixels which is then inverted using LU decomposition to create C−1 [7]. Because
we assume that the covariance between pixels in different files is zero, we can treat each file
separately and sum the individual C. Equations 8 and 9 can now be written as:

I(u, v) =

∑
n

∑
i

∑
j
√

gingjnC−1
ijnIjn∑

n

∑
i

∑
j
√

gigjC
−1
ijn

(26)

σ2
I (u, v) =

∑
n

∑
i

∑
j

binbjnCijn (27)

where there are n files, and double summing over pixels i, j in each file.

4 Testing

4.1 Consistency Check on L1527

To test the new procedure for covariance we reprocessed the L1527 data from November 2007
and September 2008. These are the same data used in the [3] paper. As closely as possible, we
processed these data the same way they were processed for the published paper. Specifically,
we used the same files, custom RGM masks, pointing corrections, smoothed tau values, and
mask flag cutoff used for the paper (see also [6]). However, we used the newest version of
sharpinteg, version 3.1.3, which contains a few minor improvements over the older versions
(see [1]). We temporarily disabled the checking for nod length to ensure we used the same
files as in the Davidson paper. The command line flags we used are:

sharpinteg sharc2-0#####.fits -r rgmfile -f 1 -w -sil -em -c -m 150
Then we ran sharpcombine version 5.40 both with and without the -cov flag:

sharp combine list combine.fits -ip 0.0034 0.00017 0.0036 0.0 -l 51 51
-hwp 91 -bg 10 0 -sm 2 -ma 5 -ps 9.5 -pm 12

We performed a χ2 analysis by dividing the data into 7 bins where each bin had 10-14
files. The bins were temporal, i.e. the first bin contained the first 12 files, the second bin
contained the next 12, etc. We computed the average value of the reduced χ2 over the entire
map and inflated the errorbars on extracted polarization vectors by the square root of this
χ2 except for the case where we used the -cov flag, when no inflation was necessary because
the reduced χ2 was near unity.
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The results of this ‘before-and-after’ test are shown in Figure 5. The polarization vectors
are similar between the three panels, giving confidence that the method is not introducing
spurious vectors.

Figure 5: E−vectors for L1527. All vectors are ≥ 2σ before debiasing. a) Original data from
[3] b) Data processed without the -cov flag. The errors are inflated by the square root of the
χ2 before plotting vectors. c) Data processed with the -cov flag. No inflation of the errors is
performed.

4.2 New Processing Techniques

As a second test we processed several different data sets (including L1527) using newer tech-
niques than before. A future memo will describe these techniques in detail, but we summarize
them below.

We used sharpinteg version 3.1.3 (nothing disabled):
sharpinteg sharc2-0#####.fits -r rgmfile -f 1 -w -sil -em -c
Note that no masking was performed (-m flag). Instead, we computed the median covari-

ance over the entire map (Fig. 4a) and within each row (Fig. 4b) to identify optical noise and
electronic row noise. We set a cutoff level of 2×10−8. Stokes Q and U pixels where the whole
map covariance was greater than or equal to this cutoff were flagged and discarded. All pixels
(I, Q, and U) where the single row covariance was greater than or equal to this cutoff were
flagged and discarded.

We estimated the sky noise in each raw file by computing the Lomb-Scargle periodogram
(basically an FFT for non-uniformly sampled data). We summed the power over the frequency
range 0.01− 0.1 Hz and discarded any file with an integrated power ≥ 5× 10−11.

For the remaining files we computed smoothed tau values using the standard sharctau
program and computed pointing corrections by polynomial interpolation over the values re-
turned by fitgauss.

Lastly, we combined the data using version 5.40 of sharpcombine both with and without
the -cov flag:
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sharp combine list combine.fits -ip 0.0027 -0.0018 0.0001 0.0 -l 51 51
-hwp 91 -bg 10 0 -sm 2 -ma 5 -ps 9.5 -pm 12

The glass M3 mirror was replaced with aluminum in 2009. For data taken after that time
(L483, L1448-IRS2, SERP-FIR1) the newer instrumental polarization (IP) above was used.
For older data (L1527, L1157), we used the older IP (-ip 0.0034 0.00017 0.0036 0.0).

We divided the data for each source into temporal bins then ran the chi2 program on the
data. Our results are summarized in Table 1. Using the -cov flag dramatically lowered the
reduced χ2 in all five sources.

Source # # Mean Reduced χ2 in Q,U
Files Bins Regular Covariance

L483 58 9 2.07 1.04
L1157 136 17 2.40 1.19
L1448-IRS2 113 16 2.29 0.99
L1527 72 7 1.87 0.97
SERP-FIR1 16 3 2.40 1.21

Table 1: χ2 results both with and without the -cov flag.
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