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1. Measuring polarization on the celestial sphere  

The convention used in astronomy is to give the position angle of the E-vector of the 
polarization.  In astronomy, position angle is always zero for North and increases toward 
East.  In other words, the polarization position angle (denoted by Φsky) has its zero for 
North-South polarization and increases counterclockwise as viewed in the sky (on the 
celestial sphere).  Traditionally, the following definitions are used for the normalized 
Stokes’ parameters qsky and usky : 

qsky = (Qsky/I) = P cos(2Φsky) 

usky = (Usky/I) = P sin(2Φsky)        (1) 

From this we can derive the following table: 

        Table 1: polarization on the celestial sphere (a.k.a. “sky frame”) 
normalized Stokes’ parameter value of Φsky orientation of E-vector  

+qsky 0° N-S 

+usky 45° NE-SW 

-qsky 90° E-W 

-usky 135° SE-NW 

 

In physics (e.g., see Jackson’s electromagnetism text) the convention is similar:  As the 
incident wave moves through the sequence (+q) … (+u) … (-q) … (-u), the incident 
wave’s E-vector rotates counterclockwise (CCW) as viewed by an observer looking at a 
wave moving toward that observer.  In physics the zero-point is taken to be horizontal 
polarization rather than N-S polarization.  We adopt the astronomers’ convention here. 

 

2. Measuring polarization in the azimuth-elevation reference frame 

It is sometimes convenient to reference the measurements to the azimuth-elevation 
system.  We adopt the same conventions as in the previous section, except that the 
reference direction is taken to be the vertical direction (“up”), rather than the N-S 
direction.  The angle of polarization in this az-el frame will be denoted as Φaz-el .   



  2 

Thus we have:  

qaz-el = P cos ( 2Φaz-el ) 

uaz-el = P sin ( 2Φaz-el )         (2) 

…from which we can derive the following table: 

  Table 2: polarization in the azimuth-elevation frame 
normalized Stokes’ parameter value of Φaz-el orientation of E-vector (as 

viewed looking outwards from 
telescope at sky) 

+qaz-el 0° vertical 

+ uaz-el 45° 45° CCW from vertical 

- qaz-el 90° horizontal 

- uaz-el 135° 45° CW from vertical 

 

Now that we have defined two reference frames in which to measure polarization, we 
have to develop the formulas for moving back and forth between these frames.  I.e., if we 
know qaz-el and uaz-el, how do we derive qsky and usky?   One reason that we need to know 
this is that the instrumental polarization is tied to the instrument reference frame while 
the polarization of the astronomical source is tied to the sky (celestial) reference frame.  
To make things even more challenging, one component of the instrumetal polarization is 
induced by M3 which moves independently from the SHARP instrument.  The next 
section deals with the formulas needed to move between reference frames and similar 
topics that will allow us to work through these issues. 

 

3. Rules for vector rotations and coordinate transformations 

vector rotations:  Imagine that you have a vector a with Cartesian coordinates (ax, ay).  If 
you rotate this vector in the counterclockwise direction by an angle φ then you get a 
different vector, call it b.  Its Cartesian coordinates will be related to those of the original 
vector a by the following formula: 
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cos(φ) −sin(φ)
sin(φ) cos(φ)
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         (3) 

To verify that I got the signs right, just let a = (1, 0) and rotate it by φ = 90°.  According 
to the formula above, you get b = (0, 1), which we know to be the correct answer.  Now 
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try the same thing for φ = 270°.  You get (0, –1).  Once again, we know this to be the 
correct answer.  So I put the minus sign in the right place in the matrix. 

coordinate transformations:  Imagine that you have a vector (call it r) and you measure 
its x-y coordinates (rx , ry) in the Cartesian coordinate system shown in blue below.  Next 
imagine that you want measure its coordinates in a different Cartesian coordinate system 
which is related to the first one by a simple counterclockwise rotation by the angle φ, as 
shown in the diagram below.  Let this new coordinate system be called the x'-y' 
coordinate system.  It is shown in red.   

 

Figure 1: A vector r can be expressed as a pair of coordinates (rx , ry) in the 
blue Cartesian system, or alternatively as (r'x , r'y) in the red Cartesian system.  
(Figure taken from the Valdosta State University coordinate transformation 
tutorials.) 

 

With a little trig you can show that the coordinates of r in the primed coordinate system 
are related to the coordinates of r in the unprimed system by a simple rotation matrix, as 
follows: 
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′ r y
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Notice that the matrix in equation (4) is the inverse of the matrix in equation (3): 

€ 

cos(φ) sin(φ)
−sin(φ) cos(φ)
 

 
 

 

 
 
cos(φ) −sin(φ)
sin(φ) cos(φ)
 

 
 

 

 
 =

1 0
0 1
 

 
 

 

 
 = I  

…where I is the “identity matrix”. 
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4. Relating the sky frame, the az-el frame, and the SHARP frame 

When SHARP observes the sky, we need to know the relationship between “up” and 
“North on the sky”.  The parallactic angle α gives this information, according to the 
convention shown in Figure 2 below: 

 

 

 

 

 

Figure 2: When looking out at the night sky, the celestial north direction (the 
direction given by moving along a great circle leading to the Pole star) makes 
some angle with respect to the “up” direction (the direction given by moving 
along a great circle leading to the zenith).  That angle is referred to as the 
parallactic angle, α.  As shown in the figure, α is the angle, measured 
clockwise, extending from “up” to “North”.  

 

Note that α is positive when “North” is clockwise with respect to “up”.  From the above 
diagram and the definitions and relationships given previously, we can see that 

Φsky  =  Φaz-el  +  α         (5) 

Also, using Figure 2 together with equation (4), we can see that 
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        (6a) 

…where the factor of 2 in front of the α corresponds to the fact that a rotation by α in 
real space is equivalent to a rotation by 2α in Stokes’ space. 

Equation (6a) is equilavent to: 
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        (6b) 

Next consider polarization measurements made in the reference frame of the SHARP 
instrument, which will be referred to as (qSH, uSH).  It will probably be helpful to look at 
Figure 1 of Li et al. (2008) while reading the rest of this section.  (This is the “Applied 
Optics” paper on SHARP.)   

Let the SHARP reference frame be defined analogously to the az-el reference frame that 
is explained in Table 2.  Thus we have +qSH representing vertical polarization as seen by 

UP (+el) 

North 
α 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someone looking from SHARP toward the tertiary mirror (M3), and +uSH representing 
radiation having its E-vector rotated by 45° in the counterclockwise direction, again, as 
seen by someone looking from SHARP toward M3.  

Now imagine what Figure 1 of Li et al. (2008) would look like with the telescope 
pointing at the horizon.  In this case a polarization vector that is vertical coming at the 
telescope ( +qaz-el ) will also be vertical as seen by SHARP (+qSH ).  However, due to the 
reflection at M3, incoming +uaz-el polarization will be seen by SHARP as –uSH .  Thus, for 
zero elevation, we have: 
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uSH
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        (for zero elevation) 

Now, what happens if we raise the telescope to a higher elevation?  Well, as you increase 
the elevation, the stuff that someone looking from SHARP toward M3 sees will rotate 
counterclockwise.  (Again, see Figure 1 of Li et al.)  So we need to apply the a rotation 
matrix to the right side of the zero-elevation formula given above to get the general 
formula.  From equation (3) we see that when you rotate a vector counterclockwise the 
rotation matrix has the minus sign in the upper right, so we obtain: 
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…where ε stands for elevation and the factor of two multiplying ε reflects the fact that a 
rotation by ε in real space is a rotation by 2ε in Stokes’ space, e.g. see equation (1). 

 

5. Relationships between bolometer output and polarization parameters 

SHARP collects data at four half-wave plate angles spaced by 22.5°, which we refer to as 
θ = 0°, θ = 22.5°, θ = 45°, and θ = 67.5°.  The actual crystal fast and slow axes are at an 
unknown angle when the half-waveplate is at θ = 0°, since the half-wave plate is installed 
in an arbitrary fashion (no attempt to line up its fast and slow axes with any reference 
direction was made).  Thus, one needs to calibrate the “zero angle” of the system.  Recall 
also that the direction corresponding to positive θ was set arbitrarily.  Thus, going from 
bolometer signals to ( qSH, uSH ) requires some careful consideration of signs, etc.   

Case 1: Idealized system:  We start with an idealized version of the SHARP polarimeter, 
to help clarify the situation.  This is shown in Figure 3 below, where the idealized 
polarimeter is being viewed from above.  The radiation proceeds from the polarimeter 
input through the HWP disk toward a polarizing grid that has its wires oriented 
horizontally.  After passing through the grid the (now) vertically polarized radiation 
reaches the detector. 
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Figure 3: Idealized version of SHARP is shown above.  The view shown here 
corresponds to looking down on the polarimeter from above.  The input 
polarization (qSH, uSH) is measured by collecting data at four different 
halfwave-plate (HWP) angles, θ = 0°, 22.5°, 45°, and 67.5°.  The definition of 
θ for this idealized polarimeter is given in the figure. 

 

Imagine that the HWP in our idealized polarimeter is initially set at θ = 0° , which we 
will assume corresponds to fast and slow axes aligned vertically and horizontally, 
respectively.  (In fact, it doesn’t matter whether the it’s the slow or the fast axis that’s 
vertical, but to be definite I’ve made the fast axis vertical.)  In this case, the detector will 
be most sensitive to input polarization state +qSH .  Now imagine that we wish to be most 
sensitive to +uSH (recall from Table 2 that this means input polarization rotated 45° 
counterclockwise from the vertical).  To accomplish this, we need to rotate the HWP by 
22.5° counterclockwise (CCW), so that the fast axis is 22.5° CCW from the vertical.   In 
this case the +uSH (= 45° CCW) input polarization gets reflected about the fast axis and 
comes out as vertical polarization, to which our detector is most sensitive.   

We can summarize the previous paragraph as follows:  When starting with sensitivity to 
+qSH, rotation of the HWP by 22.5° in the counterclockwise (CCW) direction will 
produce sensitivity to +uSH . 

Therefore, for the optical bench system described above, the measurement of (qSH, uSH) 
would be accomplished as follows: 
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qSH ∝ signal(θ=0°) – signal(θ=45°) 

uSH ∝ signal(θ=22.5°) – signal(θ=67.5°)      (8) 

Where we have assumed that θ increases CCW as viewed looking out from the detector, 
as also noted in Figure 3. 

Case 2: The real SHARP: 

The idealized polarimeter described above has some similarities and some differences 
from SHARP.   

One similarity is that θ does indeed increase as the HWP rotates CCW (as viewed 
looking out from the detectors).  Specifically, the angular velocity vector corresponding 
to positive θ points away from M3 and toward SHARP, and the two reflections between 
the HWP and M3 (see Li et al. 2008) cancel so we need not consider their effects on the 
parity of the system.  

One difference between the idealized system and SHARP is that (as noted above) the 
half-wave plate crystal axes are at an unknown angle when θ = 0°, which means that 
equations (8) are subject to rotation in (qSH, uSH) space by an arbitrary angle that must be 
determined experimentally (“zero angle” correction).  Another difference has to do with 
the fact that, for historical reasons, the definitions of q and u used by SHARPINTEG2 do 
not match those given in equations (8).  Instead, the following conventions are used by 
the SHARPINTEG2 code: 

For horizontally polarized (“H”) bolometers: 

 qRaw ∝ signal(θ=0°) – signal(θ=45°) 

 uRaw ∝ signal(θ=67.5°) – signal(θ=22.5°)     (9a) 

For vertically polarized (“V”) bolometers: 

 qRaw ∝  - {signal(θ=0°) – signal(θ=45°)} 

 uRaw ∝  - {signal(θ=67.5°) – signal(θ=22.5°)}    (9b) 

To relate (qRaw, uRaw) to (qSH, uSH) we note the following three differences:  (1) the 
arbitrary rotation discussed above, (2) a switch from V-positive (see figure 3) to H-
positive (see equations 9) which amounts to a 90° rotation, (3) and a flip in the sign of u.  
To get from (qRaw, uRaw) to (qSH, uSH), therefore, we must apply a sign flip to u followed 
by a rotation by an arbitrary angle.  (The 90° rotation gets swallowed up in the rotation 
by an arbitrary angle.)  In practice, the arbitrary angle is determined experimentally by 
inserting light with known (qSH, uSH) and measuring (qRaw, uRaw).  To restate all of this 
mathematically, we have: 
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Where χ is arbitrary so the choice of whether to put the minus sign in the upper right or 
the lower left of the matrix is arbitrary, as is the use of the “2” in front of the χ.  In any 
event, χ will be determined empirically as discussed above.  For historical reasons, we 
use a variable called h to keep track of the arbitrary rotation, and we use the following 
equation to define h:   

€ 

qSH
uSH

 

 
 

 

 
 =

cos(2h +180°) sin(2h +180°)
−sin(2h +180°) cos(2h +180°)
 

 
 

 

 
 
1 0
0 −1
 

 
 

 

 
 
qRaw
uRaw

 

 
 

 

 
     (11)  

This is the same as equation (10) if you set h = χ – 90°; we are of course free to use h 
instead of χ to keep track of the arbitrary rotation as long are we are always consistent 
about its definition.  

Equation (11) can be simplified to obtain: 
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…which we write as: 
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          (13) 

…where we have introduced the matrix R (for “raw”), defined as: 
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R ≡
−cos(2h) sin(2h)
sin(2h) cos(2h)

 

 
 

 

 
         (14) 

Since the matrix R is its own inverse (as can be easily verified by multiplying it by itself) 
we can also write: 
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6. Application of the above equations: relating the raw and sky systems 

Solving equation (7) for (qaz-el, uaz-el) and then combining the result with equations (6b) 
and (11), we obtain:   
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…which is equivalent to:  
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…which, in turn, is equivalent to: 
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…and finally we obtain: 
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This is equivalent to equations (10) and (11) of John’s July 2007 memo which is posted 
on the analysis logbook. 

 

7. Application of the above equations: instrumental polarization correction 

As described in Li et al. (2008), the SHARP instrumental polarization (i.p.) has two 
components.  One is fixed with respect to the SHARP instrument and here we express it 
in the raw frame as (qi, ui) where the “i” stands for instrument.  The other is caused by 
M3 and is expressed in the SHARP frame as (qT, uT).  Here “T” stands for telescope (M3 
is part of the telescope).  The vector (qT, uT) has the fixed value (q'T, u'T) when ε = 0°, but 
as ε is increased from zero, it is assumed to rotate CCW since the M3 mechanism rotates 
CCW in the SHARP frame as ε increases.  

In the SHARP frame, the instrumental polarization is thus written: 
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…where we have used equation (3) to determine that the negative sign should go in the 
upper right in the second matrix. 

This equation is equivalent to equation (34) in John’s July 2007 memo.   

Note that we usually set u'T = 0 and fit for q'T which is expected on physical grounds to be 
positive (Li et al. 2008).  Thus there are three free parameters in the i.p. fit: qi , ui ,  and 
q'T .  Once the i.p. is determined from a fit to the planet data, it can be subtracted from all 
observations.  This subtraction is done in the program SHARPCOMBINE.   


