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ABSTRACT. We address the question of astronomical image processing from data obtained with array detectors.
We define and analyze the cases of evenly, regularly, and irregularly sampled maps for idealized (i.e., infinite)
and realistic (i.e., finite) detectors. We concentrate on the effect of interpolation on the maps and the choice of
the kernel used to accomplish this task. We show how the normalization intrinsic to the interpolation process
must be carefully accounted for when dealing with irregularly sampled grids. We also analyze the effect of
missing or dead pixels in the array and their consequences for the Nyquist sampling criterion.

1. INTRODUCTION

The creation of smooth two-dimensional maps from a series
of samples measured at discrete points is a common problem
in astronomical image processing. The goal is to create a
smooth map with the best possible spatial resolution, given a
set of data sampled in two dimensions. The solution is com-
plicated by the fact that the data are often not sampled in a
regular way, even if the detector layout is regular. For example,
telescopes may be scanned or dithered to map areas larger than
the array, some instruments are unable to follow objects as they
rotate on the sky, or an array itself may contain flaws (i.e.,
missing or dead pixels). The resulting two-dimensional sample
pattern can often appear quite irregular.

Although the layout of most modern detector arrays (e.g.,
CCDs) can reasonably be approximated as generating evenly
sampled grids (ESGs) extending to infinity in all directions,
observations with these arrays will typically include a series
of array translations and rotations. In addition, one may want
to combine multiple images of the same piece of sky in order
to increase the signal-to-noise ratio (S/N). This requires that
the images be registered so that the same area of the sky is
being observed in each image. That is, any relative translation
and rotation of the array positions with respect to the sky must
be taken into account when combining the images. Unless the
translation and rotation operations are such that every pixel
lies in a location previously occupied by another pixel, the
resulting sample pattern is no longer an ESG.

The processing of data from any case other than an ESG
requires performing an interpolation. Some of these cases have
been discussed by other authors (e.g., Granrath & Lersch 1998).
The interpolation (or smoothing) necessarily has an effect on the
spatial resolution of the resulting map. For the case of any sam-

pling pattern (ESG or otherwise), we wish to address the fol-
lowing two questions: (1) how does one choose an optimal kernel
shape and size for the interpolation function, and (2) how does
this kernel choice affect the spatial resolution of the resulting
map? We concentrate on the case of a Gaussian kernel.

As mentioned above, the construction of maps from non-
ESG sampled data is generally done through an interpolation
of the data using a smoothing kernel (see § 4 and Lombardi
& Schneider 2001). In this paper, we begin by reviewing the
solution for ESGs using a technique based on Fourier trans-
forms (§ 3) and extend this technique in § 4 to regularly spaced
grids (RSGs), which are composed of relatively translated
ESGs. In § 5, we use the tools developed for studying RSGs
and ESGs to analyze irregularly sampled grids (ISGs) and ex-
plore the effects of missing samples in a map.

Throughout this paper, we present examples that reference
the bolometer array used with SHARP, the Submillimeter High
Angular Resolution Polarimeter. SHARP is used in conjunction
with the Submillimeter High Angular Resolution Camera II
(SHARC-II), which is deployed at the Caltech Submillimeter
Observatory (Dowell et al. 2003). For this, the 12# 32
SHARC-II detector array is optically split into two 12# 12
subarrays (and a section of unused pixels), which image12# 8
two orthogonal linear polarization components of radiation
(Novak et al. 2004). Although we concentrate on SHARP maps,
the results are applicable to any detector array or sampling
pattern.

2. MATHEMATICAL DEFINITIONS

Before embarking on the analysis of the evenly sampled grid
(ESG), we first introduce a set of definitions and functions that
are central to the development of the subsequent sections. Given
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a function , which is dependent on positiong(r) r p xe �x

, ( and are the usual Cartesian unit basis vectors), weye e ey x y

define the Fourier transform pair1

�

j2pw · rg(r) p G(w)e dudv, (1)�
��

�

�j2pw · rG(w) p g(r)e dxdy, (2)�
��

where is the spatial frequency vector. The dig-w p ue � vex y

itization of a signal will invariably introduce trains of Dirac
distributions. For example, a two-dimensional Dirac train of
periods and along and , respectively, is defined suchl l e e1 2 x y

that

� �

d(r � r ) { d(x � il )d(y � kl ), (3)� �ik 1 2
i, kp�� i, kp��

with the Fourier transform relation (see the Appendix)

� �1
d(r � r ) ⇔ d(w � w ), (4)� �ik mnl li, kp�� m, np��1 2

where

r p il e � kl e , (5)ik 1 x 2 y

m n
w p e � e . (6)mn x yl l1 2

Another useful distribution is the flat-top window of length
(in the direction in this case), which we denote byDl e1 x

Dl11, FxF ! ,x 2rect p (7)( ) DlDl 11 { 0, FxF 1 ,
2

and the corresponding Fourier transform pair

x sin (puDl )1rect ⇔ Dl sinc(puDl ) { Dl . (8)( ) 1 1 1
Dl puDl1 1

3. THE EVENLY SAMPLED GRID

The detection of a signal from an astronomical sources(r)
is inevitably achieved through a series of transformations.
Mathematically speaking, the signal is first convolved with the

1 In this paper, we use a lowercase letter and the corresponding capital letter
for a function and its Fourier transform, respectively.

telescope transfer function such thatb(r)

′s (r) p s(r) � b(r), (9)

where the symbol “ ” stands for a convolution, while the�

measured signal is a sampled, pixel-integrated version of′t (r)
. For an ESG, the sampling is done in an even manner′s (r)

with a Dirac train as defined in equations (3) and (4). More
precisely, for rectangular pixels of widths and , we writeDl Dl1 2

�

′t (r) p t(r) d(r � r )� ik
i, kp��

�

p t(r )d(r � r ), (10)� ik ik
i, kp��

with

′t(r) p s (r) � p(r)

p [b(r) � p(r)] � s(r), (11)

x y
p(r) p rect rect . (12)( ) ( )

Dl Dl1 2

The convolution

h(r) { [b(r) � p(r)] (13)

stands for what is commonly described as the point-spread
function (PSF). Using equations (2) and (4) and the properties
of the Fourier transform for products and convolutions of func-
tions, we find that

�1′T (w) p T(w) � d(w � w )� mnl l m, np��1 2

�1
p T(w � w ), (14)� mnl l m, np��1 2

with

T(w) p H(w)S(w) (15)

p B(w)P(w)S(w), (16)

and

P(w) p Dl Dl sinc(puDl )sinc(pvDl ). (17)1 2 1 2

Equation (10) is only valid for the idealized case of an infinite
array. In reality, this relation should be multiplied by an aperture
function of appropriate width and shape. Although we take this
restriction into account when analyzing the effect of missing
pixels in § 5.2, we will for the moment simplify our analysis
by assuming that the array is sufficiently large so that equa-
tions (10) and (14) are suitable approximations.
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3.1. Interpolation

The ESG studied in the previous section is the simplest
representation that can be given for a sampled set of data. As
we see in later sections, we will always seek to transform more
complicated forms of data grids (i.e., not evenly sampled ones)
into ESGs to facilitate analysis; this will invariably require the
interpolation of sampled quantities from different locations. In
addition, one might inquire about quantities at positions where
there are no samples. For example, questions such as “What
is the intensity at position A, where there is no sample, and
how does it compare to the flux at positions B, C, and D on
this map?” are common when analyzing astronomical images.
It is therefore often necessary to generate a new interpolated
map from the data set expressed through equation (10).

Given a weighting function , any value to bew(r) z (r)int

assigned to an interpolated point can be expressed as

n

z (r) p n(r) z(r )w(r � r ), (18)�int i i
ip1

where is the value associated with theith of the n dataz(r )i
points used for the interpolation. The quantity

�1
n

n(r) p w(r � r ) (19)� i[ ]
ip1

is the normalization factor, which is a function of the position
of interpolation. The generation of an interpolated map is equiv-
alent to the convolution of the initial data set with the weighting
function, followed by the normalization and resampling of the
data. This can be ascertained through a comparison of equa-
tion (18) with

�

′t (r) p d(r � r � a ){n(r)[t (r) � w(r)]}�int st pq
s, tp��

�

p d(r � r � a )� st pq
s, tp��

�

# n(r) t(r) d(r � r ) �w(r)( {[ � ] } )ik
i, kp��

�

p d(r � r � a )� st pq
s, tp��

�

# n(r) t(r )w(r � r ) ,[ � ]ik ik
i, kp��

(20)

where is defined as in equation (5) andrst

l l1 2a p e � e (21)pq x yp q

is the displacement vector specifying the position of the inter-
polated grid in the relation to the initial grid. It is im-t (r)int

portant to realize that because of the evenness in the sampling
distribution of the original map , the normalization factor′t (r)

will be periodic in character, with the same periods (i.e.,n(r)
and ) as the original sampling Dirac train.2 As a conse-l l1 2

quence, it will take a common value for all interpolated points
similarly located within a one-period segment anywhere on the
grid (see the Appendix). More precisely, data resulting from
interpolations at points and , for any integeri and kr r � rik

when is defined as in equation (5), will have the same nor-rik

malization factor. Therefore, when the resampling is done using
the same spatial sampling rate as for the original grid (as is
the case in eq. [20]), we can write Fourier transform of

ast (r)int

�1
�j2pw · ast pqT (w) p d(w � w )e�int st[ ]l l s, tp��1 2

�
c

� W(w) T(w � w ) , (22)� mn[ ]l l m, np��1 2

where c is the constant value associated with for thisn(r)
particular resampling process. Equation (22) contains multiple
copies of , one for each pair ofm and n. If the NyquistT(w)
sampling criterion is satisfied (see the Appendix), then the high-
frequency copies may be removed with negligible aliasing by
choosing the weighting function such that whenW(w) ∼ 0

(when or ). Equation (22) thenFwF 1 Fw F/2 m ( 0 n ( 0mn

simplifies to

�c
�j2pw · ast pqT (w) p W(w � w )T(w � w )e (23)�int st st2(l l ) s, tp��1 2

and

�c
t (r) p [t(r) � w(r)] d(r � r � a ). (24)�int ik pql l i, kp��1 2

The only difference between and (see eq. [10]),′t (r) t (r)int

besides the overall scaling factor and translation, is the presence
of the convolution by for the former. It is therefore ap-w(r)
parent that can serve not only as a weighting function forw(r)
interpolation, but also as a smoothing kernel, as its effect is
functionally similar to that of the PSF or any other functionh(r)
that can be applied to (see eq. [11]) before or during thet(r)
sampling process leading to . It therefore follows that the′t (r)
weighting functions also possesses spectral filtering qualities,

2 It should be noted that the normalization function will be constant for an
infinite grid when for or (e.g., sinc�1 �1W(w) p 0 FuF 1 (2l ) FvF 1 (2l )1 2

weighting functions of corresponding widths in normal space). This condition
must be strictly enforced in order to obtain a constant normalization factor
while satisfying the Nyquist sampling criterion.
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as the base spectrum is multiplied by its Fourier transformT(w)
(see eq. [23]). One can, in fact, take advantage of thisW(w)

property in some cases. For example, the extraction of a signal
from noise can be optimized by matching the spectral shape
of the Fourier transform of the weighting function (more ap-
propriately named the “filter” in this case) to that of the signal
itself (if such information is available a priori). This is a result
commonly established through the so-called matched filter the-
orem (Haykin 1983). It is to be noted, however, that optimi-
zation of the S/N through filtering is not our goal. As is made
evident in § 3.2, besides its fundamental role in the interpolation
process, we are also concerned with determining the effects of
the weighting function on the spatial resolution of a map. In
general, the spatial extent of the smoothing kernel will always
be significantly smaller than that of the optimized matched
filter.

We now investigate the case of a map resulting from a re-
sampling process where we seek to increase the density of
samples. For example, a map with half the sampling periods
as the original (i.e., of periods and ) will consist ofl /2 l /21 2

the combination of four different resampled maps [ ,t (r)1

, , and ] that all share the same sampling periodst (r) t (r) t (r)2 3 4

as the original map, but translated relative to each other. More
precisely, we define

t (r) p t (r)F , (25)1 int p, qr�

t (r) p t (r)F , (26)2 int pp2, qr�

t (r) p t (r)F , (27)3 int pr�, qp2

t (r) p t (r)F . (28)4 int pp2, qp2

In other words, is resampled at the same positions ast (r)1

the original map, while , , and are relativelyt (r) t (r) t (r)2 3 4

shifted by , , and respectively. Calculatingl l l l1 2 1 2e e e � e ,x y x y2 2 2 2

and summing the corresponding Fourier transforms (using
eq. [23]), we find for the combined map that

T (w) p T (w) � T (w) � T (w) � T (w)s 1 2 3 4

�1 s t s�tp [c � (�1) c � (�1) c � (�1) c ]� 1 2 3 42(l l ) s, tp��1 2

# W(w � w )T(w � w ),st st

(29)

where is the normalization constant associated with .c t (r)i i

Correspondingly, we further define for ,Dc p c � c j p 2j j 1

3, 4, and we rewrite equation (29) as

�1
T (w) p 4c W(w � 2w )T(w � 2w ){�s 1 st st2(l l ) s, tp��1 2

s t s�t�[(�1) Dc � (�1)Dc � (�1) Dc ]2 3 4

# W(w � w )T(w � w ) . (30)}st st

As is discussed presently in § 3.2, the magnitude of the
coefficient depends on the width of the weighting functionDcj

; the wider the function, the smaller the coefficient, andw(r)
vice versa. As we see below, there are good reasons to limit
the width of the weighting function, but if we assume for the
moment that is such that , thenw(r) Dc � 0j

�4c1T (w) � W(w � 2w )T(w � 2w ) (31)�s st st2(l l ) s, tp��1 2

and

�c r1 ikt (r) � [t(r) � w(r)] d r � . (32)� ( )s l l 2i, kp��1 2

It is instructive to compare this result with the corresponding
equation for an ESG , similar to that of equation (10), but′′t (r)
with half the sampling interval in each direction:

� rik′′t (r) p t(r) d r � , (33)� ( )
2i, kp��

�4′′T (w) p T(w � 2w ). (34)� stl l s, tp��1 2

Again we see that apart from a multiplication factor, the
(approximate) interpolated grid differs from by the′′t (r) t (r)s

presence of the convolution by . Although equations (31)w(r)
and (32) are approximations and the aforementioned corre-
spondence between and may fail for a given weight-′′t (r) t (r)s

ing function (i.e., in general in eq. [30]), this simpli-Dc ( 0j

fication is often reasonable (see § 3.2). At any rate, one can
more closely approach the idealization of equation (32) by
broadening the width of the weighting function (with aw(r)
corresponding loss in spatial resolution, however).

3.2. Selection of the Weighting Function

There is a fair amount of subjectiveness in choosing the
specific form and characteristics of a weighting function. We
choose the following two criteria as guidelines for achieving
this:

1. The function must be sufficiently broad so that its am-
plitude is large enough at the interpolated positions, while not
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Fig. 1.—Map (top) of the normalization function for a SHARP ESGn(r)
with a weighting function with ( � for SHARP). The� p l /p l p l � 4.71 1 2

top-most curve in the lower part of the figure is a cut through a row or column
of pixels for the normalization map. The bottom two curves are similar cuts
for weighting functions of and , respectively.�� p 1.3 l /p l / p � 1.8 l /p1 1 1

being too broad to significantly degrade the resolution of the
map.

2. Its spectral extent must be such that it filters out spatial
frequencies for which or (see eq. [22]�1 �1FuF 1 (2l ) FvF 1 (2l )1 2

and the discussion that follows).

We now show how this can be practically implemented by
considering the case of SHARC-II (or SHARP), where

. Furthermore, we approximate theDl p l p Dl p l1 1 2 2

SHARC-II PSF with the following Gaussian profile:

1 2�1/2(FrF/j)h(r) p e ,22pj

2 2 2 2�2p j FwF �1/2(FwF/S)H(w) p e { e .

The PSF size is usually defined by its full width at half-
maximum (FWHM), which is approximately 9� for SHARC-
II at 350 mm (Dowell et al. 2003). This givesj p

�; we will use standard deviations to1/2FWMH/[8 ln (2)] � 3.8
specify widths of Gaussian PSFs. With this definition, the one-

sided bandwidth associated with SHARC-II at 350mm is

1 1
�1S p � arcsec .

2pj 23.9

Since �, then and the Nyquist sam-�1l p l � 4.7 S 1 2l1 2 1

pling criterion is met, as previously assumed. If we were to
choose the weighting function to also be Gaussian and ofw(r)
width �, then to satisfy criterion 2 above, we must have

l1 ′′� � � 1.5 .
p

Taking the lower limit for the size of the kernel, we can
evaluate the new resolution of the map with

2l12 2 ′′��j � � p j 1 � � 1.07j p 4.1 , (35)2 2p j

which corresponds to an equivalent PSF width of 9.6� for
SHARC-II and a loss of approximately 7% in spatial resolution.
Finally, the relative amplitude of the weighting function at a
distance of one-half pixel away from the position of interpo-
lation would be

22 �(p /8)2p� w(r)F p e p 0.29. (36)rpl /21

Although equations (35) and (36) satisfy criterion 1 above,
and one could reasonably choose the corresponding weighting
function to interpolate a map, one should nonetheless verify
that the coefficients resulting from the interpolation processDcj

(see § 3.1) are sufficiently small when seeking to increase the
density of samples in the final grid. Doing so will ensure that
the approximation leading to equation (32) is adequate; for
example. Figure 1 shows a map (top) of the normalization
function for a SHARP ESG with the lower limit weightingn(r)
function considered above ( ). The top-most′′� p l /p � 1.51

curve in the lower part of the figure is a cut through a row or
column of pixels for the normalization map. The bottom two
curves are similar cuts for weighting functions of� p

and , respectively. It is clear from these�1.3 l /p l / p � 1.8 l /p1 1 1

curves that the relative amplitude of the coefficients, whichDcj

can be asserted from the level of ripple on the curves, exhibits
a strong dependency on the width of the weighting function.
For example, the two larger weighting functions in the lower
part of Figure 1 exhibit amplitude variations of 11% and 1%
for a loss in spatial resolution of 13% and 22%, respectively.
This behavior is traced to the fact that a larger weighting func-
tion will more completely cover the space located between
neighboring sampling positions; hence, the existence of a
smoother normalization function . This will be better vi-n(r)
sualized for the general case with the graph shown in Fig-
ure 2, which plots trends in normalization function (solid line)
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Fig. 2.—Trends in normalization function (solid line) and spatial resolution
degradation (dashed lines) with smoothing kernel size. The kernel sizes on
the abscissa are given as the Gaussian width (�; bottom axis) and FWHM
(p ; top axis), both in units of the array pixel separation. The1/2[8 ln (2)] �
amplitude of the normalization function’s spatial variation is given as a per-
centage of the function’s average value (see Fig. 1). The corresponding loss
in spatial resolution is described by eq. (35) and the following text. This is
plotted here for different beam sizes and is indicated in units of pixel separation.
For example, the case of SHARP, with , closely corresponds′′ ′′beamp 9 /4.7 ≈ 2
to the second dashed curve (from the top).

Fig. 3.—One-dimensional examples of (a) an evenly sampled grid (ESG),
(b) a regularly sampled grid (RSG), and (c)–(d) two irregularly sampled grids
(ISGs). Interpolations at the positions of the two vertical broken lines would
require weighting functions that have a common normalization factor for the
ESG and RSG, but different normalization factors for the ISGs. Dirac distri-
butions are shown as vertical arrows.

and spatial resolution degradation (dashed lines) with smooth-
ing kernel size (see the corresponding figure legend).

4. THE REGULARLY SAMPLED GRID
We define a regularly sampled grid (RSG) as being a gen-

eralization of the ESG discussed in the previous section. That
is, a RSG has a well-defined periodicity (just as the ESG), but
it is a grid for which the pattern of Dirac distributions is more
complex. While along a coordinate axis of the ESG there is only
one Dirac distribution for a given period, a RSG may have many
Dirac distributions (not necessarily evenly spaced) over the same
interval. This difference is illustrated in casesa andb of Figure
3 for one-dimensional versions of an ESG and a RSG, respec-
tively. Practically speaking, a RSG would be encountered any-
time that maps with similar characteristics, but that are translated
relative to one another, are combined together to form a unique,
final map. An example of this would be astronomical images of
a given object at different pointing positions.

It should be apparent from this discussion and Figure 3b that
a RSG, which we again denote by , can be simply expressed′t (r)
as a combination of a set of relatively displaced ESGs with

n �g

′t (r) p t(r) d(r � r � d ) , (37)� � ik p[ ]
pp1 i, kp��

where is defined in equation (11) andt(r)

d (r) p x e � y e (38)p p x p y

is the relative displacement associated with thepth of the ng

ESGs that make up the RSG. It is straightforward to calculate
the Fourier transform of equation (37) to get

n �g1′ �j2pw · dmn pT (w) p T(w � w )e , (39)� � mnl l pp1 m, np��1 2

with as defined in equation (6).wmn

The important aspect to emphasize for the interpolation of
a RSG is that as was the case for an ESG, the normalization
factor in equation (18) is common to all interpolated pointsn(r)
similarly located within a one-period segment anywhere on the
grid. This is illustrated with the vertical broken lines in Fig-
ure 3. The existence of such a common normalization factor
could be effectively adopted as the definition for a RSG.

If we interpolate our RSG using a weighting function
that satisfies criterion 2 above, then the high spatial fre-w(r)

quency components of the spectrum will be filtered out. There-
fore, starting from equation (39), and using steps similar to
those that led from equation (14) to equations (22) and (23),
the resulting interpolated grid becomes

�n cg �j2pw ·ast pqT (w) p W(w � w )T(w � w )e , (40)�int st st2(l l ) s, tp��1 2

and

�
n cgt (r) p [t(r) � w(r)] d(r � r � a ). (41)�int ik pql l i, kp��1 2
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Fig. 4.—Combination of two relatively rotated ESGs. Every small filled
circle corresponds to a Dirac distribution, and the position of the small open
circle is the origin of the maps and of the rotation for one of the two grids.
Its relative rotation is 10� with respect to the coordinate axes (also shown).
Neither ESG is translated. The four large open circles correspond to the foot-
print of a predetermined weighting function.

Once againc and respectively denote the common nor-apq

malization factor and the displacement of the new interpolated
grid in relation to the original grid (see eq. [21]). Obviously,
the same comments apply for the map resulting from the re-
sampling of a RSG here as for an ESG in § 3. That is, the
most notable effect of the interpolation/resampling process is
the presence of the convolution by the weighting function in
equation (41).

5. THE IRREGULARLY SAMPLED GRID

An irregularly sampled grid (ISG) can manifest itself in dif-
ferent ways. For example, Figure 3c shows a case in which
the distribution of Dirac functions within a given base period
(of length l in the figure) is not the same from one interval to
the next. Another possibility is shown in Figure 3d, where no
Dirac distributions are present for some intervals. This can be
likened to situations where pixels are missing from an array
detector (see below).

The problem in the analysis of an ISG is twofold. First, there
is no simple way of expressing the Fourier transform of irreg-
ularly spaced Dirac distributions such that the spectrum will
show a repeating pattern of some frequency, as is the case for
an ESG or a RSG. Moreover, the lack of regularity in the
positions of the Dirac distributions implies that there does not
exist a common normalization factor when performing inter-
polations to create an ESG from an ISG (see below). Never-
theless, it is still possible to analyze some specific types of
ISGs. We deal with two possible cases in what follows.

5.1. The Combination of Relatively Translated and
Rotated ESGs

It often happens that an astronomical source will be observed
at different times, when it is at different locations and orien-
tations on the celestial sphere. Invariably, we seek to combine
the resulting images to form a final map of the object. If the
array detector (which we assume to be perfect and therefore
able to generate ESGs of data) used to record the images is
part of an instrument that is unable to precisely track the ap-
parent rotation of the source on the sky, then the different
images of the source will be sampled with ESGs that will be
rotated and possibly translated relative to each other. A simple
example is shown in Figure 4, where two ESGs are combined:
one rotated by 10� with respect to the other. These grids are
not relatively translated (see the legend).

Perhaps the most important aspect of Figure 4 is the fact
that the combination of the two ESGs produces a grid that has
an irregular pattern of Dirac distributions, as can be asserted
by the coverage of a predetermined weighting function (shown
by large open circles). Clearly, any weighting function isw(r)
likely to cover a different number of samples at different po-
sitions on the map. The main consequence resulting from this
fact will be the absence of a common normalizing factor at the
different locations where interpolations are performed (note
that the normalization function in eq. [19] will not be periodic).

We can therefore expect that interpolated maps originating from
ISGs will be more complex than those resulting from ESGs
and RSGs.

Another point to consider is the possible relative rotation
between the different maps to be combined. Because of this,
we will do well to use the fact that the Fourier transform of a
rotated map is the rotated Fourier transform of the original (i.e.,
without rotation) map. That is, if we have the Fourier pair

g(r) ⇔ G(w),

then it is also true that

g(Rr) ⇔ G(Rw)

(see the Appendix), where stands for the rotation operationR
(i.e., matrix). Because of this property of the Fourier transform,
we can express an ISG composed of rotated and trans-′t (r) ng
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Fig. 5.—Combination of two relatively rotated ESGs, similar to those of
Fig. 4. We show a map (top) of the normalization function for the resultingn(r)
SHARP ISG using a weighting function with ( � for� p l /p l p l � 4.71 1 2

SHARP). The top-most curve in the bottom part of the figure is an arbitrary
cut through a row of pixels for this normalization map. The bottom two curves
are similar cuts for weighting functions of and ,�� p 1.3 l /p l / p � 1.8 l /p1 1 1

respectively. The filled circles highlight the values taken by for a resam-n(r)
pling onto an ESG at the original sampling rate. It is clear from the top two
cuts that the normalization factor is not constant in general.

lated ESGs and its Fourier transform as

n �g

′t (r) p t(r) d(r � R r � d ), (42)� � p ik p
pp1 i, kp��

n �g1′ �j2pw · dmn pT (w) p T(w � R w )e , (43)� � p mnl l pp1 m, np��1 2

where and are, respectively, the rotationR d p x e � y ep p p x p y

matrix and the translation vector corresponding to gridp. Just
as for the RSG, our goal is to generate an ESG of periodst (r)int

and (along thex- and y-axes, respectively) from .′l l t (r)1 2

Although, as was previously pointed out, we cannot express
the interpolation process with a simple convolution with a
weighting function , we can still use the general expressionw(r)
given in equation (20). That is, with denoting the origin ofapq

the new interpolated grid (see eq. [21]), we have

�

′t (r) p [t (r) � w(r)]n(r) d(r � r � a )�int ik pq
i, kp��

n �g

p t(r) d(r � R r � d ) �w(r){[ � � ] }p ik p
pp1 i, kp��

�

# n(r) d(r � r � a ). (44)� ik pq
i, kp��

Calculating the Fourier transform of equation (44), we get

n �g1
�j2pw · dst pT (w) p T(w � R w )e� �int p st({[ ]l l pp1 s, tp��1 2

# W(w) � N(w)} )
�1

�j2pw · amn pq� d(w � w )e ,� mnl l m, np��1 2

which, using the assumption that is such that it filtersW(w)
out the higher frequency components of the spectrum, can be
approximated to

�ng �j2pw ·amn pqT (w) p e {[ T(w)W(w)] � N(w)}�int wpw�w2 mn(l l ) m, np��1 2

(45)

Correspondingly, we can approximate equation (44) to

�ngt (r) p {[ t(r) � w(r)]n(r)} d(r � r � a ). (46)�int ik pql l i, kp��1 2

Equation (45) shows best the effect of the lack of a common
normalization factor on the interpolation process. Since the
Fourier transform of the normalization function is con-N(w)
volved with the weighted (and low-pass–filtered) spectrum

, the resulting spectrum of the interpolated ESGT(w)W(w)
is broadened by . It is interesting to note thatt (r) N(w)int

and have opposite effects on the signal. That is, thew(r) n(r)
weighting function restricts the extent of the spectrum, while
the normalization function extends it.

Given such an ISG, it should in principle be possible to
evaluate and quantify its effect. In particular, one shouldn(r)
ensure that the two previous criteria (see § 3.2) used to select
the weighting function are met. Optimally, will exhibitn(r)
slow variations and sufficiently low amplitude that the spectral
broadening will be minimal. To make this clearer, we show in
Figure 5 an example consisting of a combination of two rel-



ASTRONOMICAL IMAGE PROCESSING 879

2007 PASP,119:871–885

atively rotated ESGs, similar to those of Figure 4 (i.e., one
rotated by 10� with respect to the other, and no relative trans-
lation between the two). The map at the top of the figure is
for the normalization function of the resulting SHARPn(r)
ISG using a weighting function with (� p l /p l p1 1

� for SHARP). The top-most curve in the lower partl � 4.72

of the figure is an arbitrary cut through a row of pixels for this
normalization map. The bottom two curves are similar cuts for
weighting functions of and , re-�� p 1.3 l /p l / p � 1.8 l /p1 1 1

spectively. The black dots highlight the values taken byn(r)
for a resampling onto an ESG at the original sampling rate. It
is clear from the top two cuts that the normalization factor is
not constant in general. One can also assert from this that the
spectrum due to a broad source (in relation to the size of the
map) would be significantly more broadened by the weighting
function that produced the top curve (i.e., with ) than� p l /p1

by the other two.

5.2. The Effects of Missing Samples

It is a common, if unfortunate, fact that detector arrays used
in astronomy will often contain pixels that are either performing
significantly below specifications or are completely unusable.
Astronomers usually work around the difficulties occasioned
by these so-called missing pixels by dithering the array during
observations, thus ensuring complete mapping of the source
under study. However, it would be instructive to analyze and
quantify the impact that missing pixels would have on the
representation of astronomical signals without such corrective
techniques.

Although we take into account the fact that the map obtained
from the array is composed of a finite number of samples, our
approach consists of first temporarily lending it an infinite char-
acter and then removing it. More precisely, although the size
of the (rectangular) detector array considered in this section is

, we first assume that the two-dimensional patternN l # N l1 1 2 2

of pixels (including the missing pixels) repeats infinitelyN N1 2

in all directions. The underlying assumption is that the finite-
ness of the map will be restored in the end by windowing with
the appropriate aperture function. Using this approach, we ex-
press the sampled signal (before windowing) as

�

′t (r) p t(r) d(r � d � r ), (47)� � st pix
pix s, tp��

where is the position of a pixel on the array and (take noterpix

of the periods)

d p sN l e � tN l e . (48)st 1 1 x 2 2 y

That is, we first account for the pixels of the finite array
through the summation , and then associate a Dirac train� pix

of periods to each pixel. These Dirac trains are(N l , N l )1 1 2 2

relatively translated in space and are accounted for by the sum-

mations ons and t in equation (47). The Fourier transform of
the combined Dirac trains is

�

d(r � d � r )� � st pix
pix s, tp��

�1
�j2pw · rpix⇔ e d(w � w ), (49)� � mn[ ] N N l lpix m, np��1 2 1 2

with

m n
w p e � e . (50)mn x yN l N l1 1 2 2

Note that the minimum separation between two Dirac dis-
tributions in frequency space is , whereNl is the greater1/Nl
of and . We write the right-hand side of equation (49),N l N l1 1 2 2

which we denote by , as follows:D(w)

�1
D(w) p E(w )d(w � w ), (51)� mn mnl l m, np��1 2

with

1
�j2pw · rmn pixE(w ) p e . (52)�mn N N pix1 2

The effect of missing pixels can now easily be quantified,
at least in principle, by omitting them from the summation� pix

in equation (52). As an example, consider the case in which
the pixels in the “top right” corner of the array areM # M
missing. For this particular example, we will do well to make
the following substitutions:

r� ��
pix i k

r r il e � kl e ,pix 1 x 2 y

where the indicesi and k stand for the columns and rows of
the detector, respectively. We can then transform equation (52)
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to

N �1 N �M�11 21
�j2pim/N �j2pkn/N1 2E(w ) p e e� �mn (N N ip0 kp01 2

N �M�1 N �11 2

�j2pim/N �j2pkn/N1 2� e e� � )ip0 kpN �M2

jpn(M�1)/N2e sin (pm)m�n jpm/N1p (�1) e{N N sin (pm/N )1 2 1

sin [pn(N � M)/N ]2 2 m jpm(M�1)/N1# � (�1) e
sin (pn/N )2

sin [pm(N � M)/N ] sin (pnM/N )1 1 2# .}sin (pm/N ) sin (pn/N )1 2

(53)

When (i.e., when all the pixels are accounted for),M p 0
equation (53) simplifies to

′ ′1, m p m N and n p n N1 2E(w ) pmn {0, elsewhere

where and are some integer numbers. That is to say,′ ′m n
equation (51) then becomes

�1
D(w) p d[w � w ],� (N m)(N n)1 2l l m, np��1 2

which is, as it should be, the same result as was obtained earlier
with equation (4) for the ESG.

Although it is necessary to plot to assess the effectE(w )mn

of an arbitrary distribution of missing pixels, it should now be
clear from equation (53) that its amplitude is in general nonzero
for all values ofm and n. In other words, by removing even
only one pixel, we went from a case in which we only had
Dirac functions at frequency intervals of and to a sit-�1 �1l l1 2

uation where they are separated by intervals of only �1(N l )1 1

and . It is important, however, to quantify the relative�1(N l )2 2

magnitude of these Dirac distributions. For example, returning
to equation (53) pertaining to our case of the missingM # M
“top right” pixels, we find that

E(w ) MF sin [p(N � M)/N ]/ sin (p/N )F10 1 1 1pF F 2E(w ) N N � M00 1 2

2M
� , for M K N . (54)12N N � M1 2

This last relation yields the perhaps intuitive result that when
only a small number of pixels are missing, the amount of
contamination determined by the ratio expressed in equa-
tion (54) is approximately equal to the ratio of the number of
missing pixels to the number of good pixels. However, we
should resist the temptation to generalize this result, since dif-
ferent distributions of missing pixels would give different2M
levels of contamination; especially if they are not concentrated
in one part of the array, as is the case here. An example is
shown in Figure 6, where the function is plotted forE(w )mn

three different cases. Starting with the nominal SHARP
array, is shown for when (1) no pixels12# 12 E(w ) n p 0mn

(black curve and dots), (2) 16 randomly positioned pixels (red
curve and dots), and (3) the “top right” corner pixels4 # 4
(blue curve and dots) are missing. Contrary to the case of an
ESG (corresponding to the black dots) where whenE(w ) p 0mn

, an ISG (red and blue dots) will in generalFmF ( 0, 12, …
have for all m and n. It should be clear thatE(w ) ( 0mn

acts as a mask that will or will not allow the appearanceE(w )mn

of Dirac distributions that are more closely spaced in frequency,
depending on whether or not there are missing pixels in the
array. This serves to emphasize the fact that missing pixels
will bring some spectral contamination (i.e., aliasing) in the
sampled signal.

This becomes more evident if we calculate the spectrum of
the measured signal from equations (47) and (51):

�1′T (w) p E(w )T(w � w ). (55)� mn mnl l m, np��1 2

We see that the different replicas of are spaced inT(w)
frequency according to equation (50) (compare this with the
case of the ESG in eq. [6], where the spacing between replicas
is N times greater). Contrary to the case of an ESG, a con-
volution with the usual weighting function will not restorew(r)
a low-pass–filtered version of the map. To make this clear,t(r)
we first define a new function such thatY(w)

Y(w) p E(w )T(w � w ). (56)� mn mn
m, n

Then proceeding with the usual interpolation defined in equa-
tion (18), we find that

�1
�j2pw · ast pqT (w) p e {[ Y(w)W(w)] � N(w)}�int wpw�w2 st(l l ) s, tp��1 2

(57)

and

�1
t (r) p {[ y(r) � w(r)]n(r)} d(r � r � a ), (58)�int ik pql l i, kp��1 2

where is defined in equation (21) and denotes, once again,apq
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Fig. 6.—Function for when no pixels (black), 16 randomly positioned pixels (red), and the “top right” corner pixels (blue) are missing.E(w ) n p 0 4# 4mn

Contrary to the case of an ESG (corresponding to the black dots) where when , an ISG (red and blue dots) will in general haveE(w ) p 0 FmF ( 0, 12, …m0

for all m and n. The amplitude of for the relevant (i.e., integer) values ofm are shown by the colored dots. The curves, which includeE(w ) ( 0 E(w )mn mn

computations at intermediate values ofm, are only shown to emphasize the fact that can be interpreted as a mask function (see text).E(w )mn

the position of the origin of the interpolated grid. These equa-
tions show that maps resulting from the interpolation of ISGs
containing missing pixels suffer from both spectral aliasing
[from the presence of in lieu of in eq. (57)] andY(w) T(w)
broadening [because of the presence of ].N(w)

We once again stress the realization that missing pixels will
bring some amount of aliasing that will be impossible to remove
with a reasonably sized weighting function. The concept of
Nyquist sampling can even lose much of its meaning and use-
fulness in a situation where too many pixels are missing, or
when the level of contamination due to spectral aliasing is
comparable to the noise level present in the map . This fact
strongly underlines the necessity of performing adequate dith-
ers or other scanning strategies when observing with an im-
perfect detector array.

We complete the analysis by performing the windowing
mentioned earlier, which transforms equation (55) to

x y′t (r) p t (r) rect rect[ ( ) ( )]int int N l N l1 1 2 2

′T (w) p T (w) � [N l N l sinc(puN l )sinc(pvN l )].int int 1 1 2 2 1 1 2 2

(60)

For reasonably large detector arrays, we do not expect that
the presence of the sinc functions will be of any significance,
due to their spectral narrowness relative to the extent of

[or ]. Because of this, our periodic depictionT(w) Y(w)W(w)
of the array, on which our analysis rests, is justified.

6. SUMMARY

In this paper, we addressed the question of astronomical
image processing from data obtained with array detectors. We
defined and analyzed the cases of evenly (ESG), regularly
(RSG), and irregularly (ISG) sampled grids for idealized and
realistic detectors. We focused on the effect of interpolation on
the maps, while using a Gaussian kernel to accomplish this
task. In all cases (i.e., ESG, RSG, and ISG), we have applied
the method of weighted averages (eq. [18]) to produce a map
interpolated on a finely spaced grid.

We defined an ESG as a map where the signal to be analyzed
is digitized with a simple, two-dimensional train of Dirac dis-
tributions evenly separated with well-defined spacings (see
eq. [3]). Moreover, since the ESG is the simplest way to rep-
resent and analyze a set of sampled data, we always sought to
transform a non-evenly sampled grid (i.e., a RSG or an ISG)
to an ESG through the process of interpolation. While studying



882 HOUDE & VAILLANCOURT

2007 PASP,119:871–885

the ESG, we found that the interpolation process invariably
leads to a loss in spatial resolution, and that this loss grows
with increasing width of the smoothing kernel (this result is
true in general; i.e., when considering RSGs and ISGs). When
an ESG is resampled at the same rate as the original map, the
interpolation process can usually be adequately taken into ac-
count by replacing the original signal by its convolution with
the weighting function (see eq. [24]). However, the same is not
true in general when the final ESG is resampled at a rate dif-
ferent than that of the original map (see eq. [30]). This is due
to the fact that the normalization function that is intrinsic (and
necessary) to the interpolation process is not constant but is a
function of position (although it is periodic, with periods cor-
responding to the sampling rates). The aforementioned replace-
ment of the original map in the interpolation process by its
convolution with the weighting function will only be adequate
in such cases when the latter is sufficiently broad relative to
the spacing between samples (see Figs. 1 and 2).

We defined a RSG as a generalization of an ESG such that
it consists of a combination of a number of relatively translated
ESGs of similar sampling rates. All the results obtained for the
ESG can be generalized to the RSG.

We analyzed two different types of ISGs: the combination
of relatively translated and rotated ESGs, and ESG-like maps
with missing samples (e.g., data grids made with detectors
exhibiting dead pixels). In the first case, the interpolation pro-
cess cannot be simply represented by a convolution of the
original signal with the weighting function, as this operation

must be subsequently multiplied by the normalization function
(see eq. [46]). Because of the irregular nature of the new map,
the normalization function is not periodic in general and will
add structure to the spectrum (i.e., the Fourier transform) of
the map. More precisely, the spectrum of the source (filtered
by the spectral profile of the weighting function) will be broad-
ened through its convolution with the Fourier transform of the
normalization function. This effect is a function of the size of
the weighting function, as the spatial variation of the normal-
ization function grows larger for smaller kernel widths. Al-
though these results also apply to maps exhibiting missing
samples, we found that these further suffer from spectral al-
iasing that may reduce or negate the usefulness of the Nyquist
sampling criterion in extreme cases. This fact strongly under-
lines the necessity of performing adequate dithers or other scan-
ning strategies when observing with an imperfect detector
array.
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APPENDIX A

In this Appendix, we provide a few simple derivations to justify some of the results used in the text.

A1. FOURIER TRANSFORM OF A DIRAC TRAIN

The Fourier transform of a Dirac train can easily be determined by first calculating the associated Fourier series. In the one-
dimensional case, we have

� �1 j2pn(x/l)d(x � il) p e , (A1)� �
lip�� np��

since the Fourier series for a periodic function of periodl is defined asg(x)

�

j2pn(x/l)g(x) p G(n)e ,�
np��

where the Fourier coefficient isG(n)

l/2
1

�j2pn(x/l)G(n) p g(x)e dx.�l �l/2

Before calculating the Fourier transform of equation (A1), we consider the so-called duality property of the Fourier pair in
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equations (1) and (2). More precisely, we mean that if for a function we havef (r)

f (r) ⇔ F(w),

then it must also be true that for we haveF(�r)

F(�r) ⇔ f (w),

as can be readily verified by inspection of equations (1) and (2). It follows from this that since

�j2pw · r0d(r � r ) ⇔ e ,0

then

j2pw · r0e ⇔ d(w � w ). (A2)0

Using the one-dimensional version of equation (A2) to calculate the Fourier transform of equation (A1), we find that

� �1 n
d(x � il) ⇔ d u � . (A3)� � ( )

l lip�� np��

The two-dimensional generalization of this result is straightforward and leads to equations (3) and (4).

A2. THE NYQUIST SAMPLING CRITERION

The “Nyquist sampling criterion” can be understood with equation (A3) and the product/convolution property of the Fourier
transform. This property states that the following Fourier pair is valid

f (r)g(r) ⇔ F(w) � G(w)

for two functions and , as can easily be verified from the definition of the Fourier transform. Therefore, for the samplingf (r) g(r)
of a function , we havet(x)

� �1 n
t(x) d(x � il) ⇔ T(u) � d u �� � ( )

l lip�� np��

�1 n⇔ T u � ,� ( )
l lnp��

which implies that the base spectrum is repeated in frequency space at an interval equal to the sampling period of . It is�1T(u) l
apparent that in order to avoid any cross-contamination between the different spectral replicas of , the following relation mustT(u)
be enforced:

1
T(u) p 0 for FuF ≥ . (A4)

2l

Relation (A4) is the one-dimensional mathematical equivalent of the Nyquist sampling criterion, which states that in order to
recover the base spectrum from its sampled version (through spectral filtering), the sampling frequency must be at least twiceT(u)
as large as the frequency extent of .T(u)
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A3. NORMALIZATION FACTOR

We know from our analysis that an interpolated map resulting from a previously sampled data set is given by′t (r) t (r)int

�

′t (r) p d(r � r � a ){n(r)[t (r) � w(r)]},�int st pq
s, tp��

which we transform slightly to

�

′t (r) p n(r) d(r � r � a ) [t (r) � w(r)]. (A5)�int st pq[ ]
s, tp��

As usual, and are the normalization and weighting functions, respectively, and the vectors and are given byn(r) w(r) r ast pq

equations (5) and (21). When the original map is an ESG, the normalization function is periodic and can therefore be expanded
with a two-dimensional Fourier series

�

j2pw · rikn(r) p N(i, k)e , (A6)�
i, kp��

where is the corresponding Fourier coefficient and is given by equation (6).N(i, k) wik

From equations (A2) and (A6), we can write the Fourier transform of equation (A5) as

� �1
�j2pw · apqT (w) p N(i, k)d(w � w ) � d(w � w )e� �int ik mn{[ ] [ ]}l li, kp�� m, np��1 2

′� [T (w)W(w)]

� �1
�j2p(w�w ) · aik pqp N(i, k) d(w � w � w )e� � mn ik[ ]l l i, kp�� m, np��1 2

′� [T (w)W(w)]

� �1
�j2pw · a �j2pw · aik pq pqp N(i, k)e d(w � w � w )e� � mn ik[ ]l l i, kp�� m, np��1 2

′� [T (w)W(w)],

but since

� �

d(w � w � w ) p d(w � w ),′ ′� �mn ik m n′ ′m, np�� m , n p��

with and , then′ ′m p m � i n p n � k

� �1
�j2pw · a �j2pw · aik pq pqT (w) p N(i, k)e d(w � w )e′ ′� �int m n{[ ][ ]}′ ′l li, kp�� m , n p��1 2

′� [T (w)W(w)].
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However, we can use equation (A6) one more time to transform this last relation to

�1
�j2pw · a ′pqT (w) p n(a ) d(w � w )e � [T (w)W(w)]�int pq mn[ ]l l m, np��1 2

and

�

′t (r) p n(a ) d(r � r � a )[t (r) � w(r)]. (A7)�int pq st pq
s, tp��

Evidently, is constant for a given interpolated map, but will vary as a function of the displacement of the new samplingn(a )pq

grid (defined by ) relative to the original one. Equation (A7) leads to (and justifies) equation (24), provided that we seta c ppq

.n(a )pq

A4. FOURIER TRANSFORM OF A ROTATED MAP

Finally, we prove the result used in § 5 that the Fourier transform of a rotated map is the rotated Fourier transform of the
unrotated map. To do so, we subject a two-dimensional map to a rotation and calculate the Fourier transform of theg(r) R
transformed map withg(Rr)

�

′ �j2pw · rG (w) p g(Rr)e dxdy.�
��

We now make the change of variable to get′r p Rr

�

�1 ′′ ′ �j2pw · (R r ) ′ ′G (w) p g(r )e dx dy�
��

�

′′ �j2p(Rw) · r ′ ′p g(r )e dx dy , (A8)�
��

where the last transformation was made possible by the fact that the inverse of a rotation matrix equals its transpose. We therefore
find from equation (A8) that if

g(r) ⇔ G(w),

then

g(Rr) ⇔ G(Rw).
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